首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin E protein levels and associated kinase activity rise in late G1 phase, reach a peak at the G1/S transition, and quickly decline during S phase. The Cyclin E /Cdk2 complex has a well-established function in regulating two fundamental biological processes: cell cycle progression and DNA replication. However, Cyclin E expression is deregulated in a wide range of tumors. Our recent reports have uncovered a critical role for Cyclin E, independent of Cdk2, in the cell death of hematopoietic tumor cells exposed to genotoxic stress. An 18-kD C-terminal fragment of Cyclin E, p18-Cyclin E, which is generated by caspase-mediated cleavage in hematopoietic cells during genotoxic stress-induced apoptosis has a critical role in the amplification of the intrinsic apoptotic pathway. By interacting with Ku70, p18-Cyclin E liberates Bax, which participates in the amplification of apoptosis by sustaining a positive feedback loop targeting mitochondria. This process is independent of p53 function and new RNA or protein synthesis. Therefore, Cyclin E emerges as an arbiter of the genotoxic stress response by regulating a finite physiological balance between cell proliferation and death in hematopoietic cells.  相似文献   

2.
The cyclin E/Cdk2 complex plays an essential role in the G(1)/S cell cycle transition and DNA replication. Earlier we showed that in hematopoietic tumor cells, caspase-mediated cleavage of cyclin E generates p18-cyclin E, which is unable to interact with Cdk2 and therefore plays a role independent of the cell cycle. The expression of a cleavage-resistant cyclin E mutant greatly diminishes apoptosis, indicating the critical role of cyclin E cleavage. p18-cyclin E expression can induce apoptosis or sensitization to apoptotic stimuli in many cell types. Here we identify Ku70 as a specific p18-cyclin E-interacting partner. In hematopoietic tumor cell lines, the association of p18-cyclin E with Ku70 induces the dissociation of Bax from Ku70, followed by Bax activation. This mechanism of Bax activation leads to the amplification of the apoptosis signal in all tumor cell lines examined. N-terminal Ku70 deletion mutants are unable to bind to p18-cyclin E to regulate its apoptotic effect. p18-cyclin E-mediated amplification of apoptosis is dependent on Bax and Ku70 being greatly diminished in Ku70(-/-) and Bax(-/-) mouse embryo fibroblasts and in hematopoietic cells where Bax knockdown was achieved by short interfering RNA. The p18-cyclin E/Ku70 and Bax/Ku70 interactions provide a balance between apoptosis and the survival of cells exposed to genotoxic stress.  相似文献   

3.
Autophagy regulates cell survival and cell death upon various cellular stresses, yet the molecular signaling events involved are not well defined. Here, we established the function of a proteolytic Cyclin E fragment (p18-CycE) in DNA damage-induced autophagy, apoptosis, and senescence. p18-CycE was identified in hematopoietic cells undergoing DNA damage-induced apoptosis. In epithelial cells exposed to DNA damage, chronic but not transient expression of p18-CycE leads to higher turnover of LC3 I/II and increased emergence of autophagosomes and autolysosomes. Levels of p18-CycE, which was generated by proteolytic cleavage of endogenous Cyclin E, were greatly increased by chloroquine and correlated with LC 3II conversion. Preventing p18-CycE genesis blocked conversion of LC3 I to LC3 II. Upon DNA damage, cytoplasmic ataxia-telangiectasia-mutated (ATM) was phosphorylated in p18-CycE-expressing cells resulting in sustained activation of the adenosine-mono-phosphate-dependent kinase (AMPK). These lead to sustained activation of mammalian autophagy-initiating kinase ULK1, which was abrogated upon inhibiting ATM and AMPK phosphorylation. Moreover, p18-CycE was degraded via autophagy followed by induction of senescence. Both autophagy and senescence were prevented by inhibiting autophagy, which leads to increased apoptosis in p18-CycE-expressing cells by stabilizing p18-CycE expression. Senescence was further associated with cytoplasmic co-localization and degradation of p18-CycE and Ku70. In brief, chronic p18-CycE expression-induced autophagy leads to clearance of p18-CycE following DNA damage and induction of senescence. Autophagy inhibition stabilized the cytoplasmic p18-CycE-Ku70 complex leading to apoptosis. Thus, our findings define how chronic apoptotic stress and DNA damage initiate autophagy and regulate cell survival through senescence and/or apoptosis.  相似文献   

4.
Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM.  相似文献   

5.
Cyclin E/Cdk2 is a critical regulator of cell cycle progression from G(1) to S in mammalian cells and has an established role in oncogenesis. Here we examined the role of deregulated cyclin E expression in apoptosis. The levels of p50-cyclin E initially increased, and this was followed by a decrease starting at 8 h after treatment with genotoxic stress agents, such as ionizing radiation. This pattern was mirrored by the cyclin E-Cdk2-associated kinase activity and a time-dependent expression of a novel p18-cyclin E. p18-cyclin E was induced during apoptosis triggered by multiple genotoxic stress agents in all hematopoietic tumor cell lines we have examined. The p18-cyclin E expression was prevented by Bcl-2 overexpression and by the general caspase and specific caspase 3 pharmacologic inhibitors zVAD-fluoromethyl ketone (zVAD-fmk) and N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD-CHO), indicating that it was linked to apoptosis. A p18-cyclin E(276-395) (where cyclin E(276-395) is the cyclin E fragment containing residues 276 to 395) was reconstituted in vitro, with mutagenesis experiments, indicating that the caspase-dependent cleavage was at amino acid residues 272 to 275. Immunoprecipitation analyses of the ectopically expressed cyclin E(1-275), cyclin E(276-395) deletion mutants, and native p50-cyclin E demonstrated that caspase-mediated cyclin E cleavage eliminated interaction with Cdk2 and therefore inactivated the associated kinase activity. Overexpression of cyclin E(276-395), but not of several other cyclin E mutants, specifically induced phosphatidylserine exposure and caspase activation in a dose-dependent manner, which were inhibited in Bcl-2-overexpressing cells or in the presence of zVAD-fmk. Apoptosis and generation of p18-cyclin E were significantly inhibited by overexpressing the cleavage-resistant cyclin E mutant, indicating a functional role for caspase-dependent proteolysis of cyclin E for apoptosis of hematopoietic tumor cells.  相似文献   

6.
7.
Turnover of cyclin E is controlled by SCF(Fbw7). Three isoforms of Fbw7 are produced by alternative splicing. Whereas Fbw7alpha and -gamma are nuclear and the beta-isoform is cytoplasmic in 293T cells, all three isoforms induce cyclin E destruction in an in vivo degradation assay. Cyclin E is phosphorylated on Thr(62), Ser(88), Ser(372), Thr(380), and Ser(384) in vivo. To examine the roles of phosphorylation in cyclin E turnover, a series of alanine point mutations in each of these sites were analyzed for Fbw7-driven degradation. As expected, mutation of the previously characterized residue Thr(380) to alanine led to profound defects of cyclin E turnover, and largely abolished association with Fbw7. Mutation of Thr(62) to alanine led to a dramatic reduction in the extent of Thr(380) phosphorylation, suggesting an indirect effect of this mutation on cyclin E turnover. Nevertheless, phosphopeptides centered at Thr(62) associated with Fbw7, and residual binding of cyclin E(T380A) to Fbw7 was abolished upon mutation of Thr(62), suggesting a minor role for this residue in direct association with Fbw7. Mutation of Ser(384) to alanine also rendered cyclin E resistant to degradation by Fbw7, with the largest effects being observed with Fbw7beta. Cyclin E(S384A) associated more weakly with Fbw7alpha and -beta isoforms but was not defective in Thr(380) phosphorylation. Analysis of the localization of cyclin E mutant proteins indicated selective accumulation of cyclin E(S384A) in the nucleus, which may contribute to the inability of cytoplasmic Fbw7beta to promote turnover of this cyclin E mutant protein.  相似文献   

8.
9.
The ubiquitin-mediated proteolysis of cyclin E plays a central role in cell-cycle progression, and cyclin E accumulation is a common event in cancer. Cyclin E degradation is triggered by multisite phosphorylation, which induces binding to the SCF(Fbw7) ubiquitin ligase complex. Structures of the Skp1-Fbw7 complex bound to cyclin E peptides identify a doubly phosphorylated pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly phosphorylated pThr62 motif as a low-affinity one. Biochemical data indicate that the closely related yeast SCF(Cdc4) complex recognizes the multisite phosphorylated Sic1 substrate similarly and identify three doubly phosphorylated Sic1 degrons, each capable of high-affinity interactions with two Cdc4 phosphate binding sites. A model that explains the role of multiple cyclin E/Sic1 degrons is provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7 dimerization enhances the turnover of a weakly associated cyclin E in vivo, and that Cdc4 dimerization increases the rate and processivity of Sic1 ubiquitination in vitro.  相似文献   

10.
The SCF(FBW7) ubiquitin ligase degrades proteins involved in cell division, growth, and differentiation and is commonly mutated in cancers. The Fbw7 locus encodes three protein isoforms that occupy distinct subcellular localizations, suggesting that each has unique functions. We used gene targeting to create isoform-specific Fbw7-null mutations in human cells and found that the nucleoplasmic Fbw7alpha isoform accounts for almost all Fbw7 activity toward cyclin E, c-Myc, and sterol regulatory element binding protein 1. Cyclin E sensitivity to Fbw7 varies during the cell cycle, and this correlates with changes in cyclin E-cyclin-dependent kinase 2 (CDK2)-specific activity, cyclin E autophosphorylation, and CDK2 inhibitory phosphorylation. These data suggest that oscillations in cyclin E-CDK2-specific activity during the cell cycle regulate the timing of cyclin E degradation. Moreover, they highlight the utility of adeno-associated virus-mediated gene targeting in functional analyses of complex loci.  相似文献   

11.
The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor cell lines and primary cancers , and Fbw7 loss in cultured cells causes genetic instability . In mice, deletion of Fbw7 leads to embryonic lethality associated with defective Notch and cyclin E regulation . The human Fbw7 locus encodes three protein isoforms (Fbw7alpha, Fbw7beta, and Fbw7gamma) . We find that these isoforms occupy discrete subcellular compartments and have identified cis-acting localization signals within each isoform. Surprisingly, the Fbw7gamma isoform is nucleolar, colocalizes with c-Myc when the proteasome is inhibited, and regulates nucleolar c-Myc accumulation. Moreover, we find that knockdown of Fbw7 increases cell size consistent with its ability to control c-Myc levels in the nucleolus. We suggest that interactions between c-Myc and Fbw7gamma within the nucleolus regulate c-Myc's growth-promoting function and that c-Myc activation is likely to be an important oncogenic consequence of Fbw7 loss in cancers.  相似文献   

12.
Ku70 plays an important role in DNA damage repair and prevention of cell death. Previously, we reported that apoptosis caused a decrease in cellular Ku70 levels. In this study, we analyzed the mechanism of how Ku70 levels decrease during drug-induced apoptosis. In HeLa cells, staurosporin (STS) caused a decrease in Ku70 levels without significantly affecting Ku70 mRNA levels. We found that Ku70 protein was highly ubiquitinated in various cell types, such as HeLa, HEK293T, Dami (a megakaryocytic cell line), endothelial, and rat kidney cells. An increase in ubiquitinated Ku70 protein was observed in apoptotic cells, and proteasome inhibitors attenuated the decrease in Ku70 levels in apoptotic cells. These results suggest that the ubiquitin-proteasome proteolytic pathway plays a role in decreasing Ku70 levels in apoptotic cells. Ku70 forms a heterodimer with Ku80, which is required for the DNA repair activity of Ku proteins. We also found that Ku80 levels decreased in apoptotic cells and that Ku80 is a target of ubiquitin. Ubiquitinated Ku70 was not found in the Ku70-Ku80 heterodimer, suggesting that modification by ubiquitin inhibits Ku heterodimer formation. We propose that the ubiquitin-dependent modification of Ku70 plays an important role in the control of cellular levels of Ku70.  相似文献   

13.
SCF ubiquitin ligases regulate the degradation of many proteins involved in thecontrol of cell division and growth. F-box proteins are the SCF components that bind tosubstrates, and this binding is usually signaled by substrate phosphorylation. TheFbw7/hCdc4 F-box protein was first recognized by its binding to cyclin E, and theSCFFbw7 is now known to target c-Myc, c-Jun and Notch for degradation, in addition toits role in cyclin E proteolysis. Fbw7 thus negatively regulates several keyoncoproteins. Accordingly, Fbw7 is a tumor suppressor that is mutated in a widespectrum of human cancers, and Fbw7 functions as a haploinsufficient tumor suppressorin mice. Because there are three Fbw7 isoforms that reside in different subcellularcompartments, as well as multiple Fbw7 substrates that are the products of protooncogenes,the mechanisms of tumor suppression by Fbw7 are complex and incompletelyunderstood. In this review we discuss the activities of the SCFFbw7 in the context of itsrole as a tumor suppressor and highlight recent findings demonstrating that dominantoncogenes disable Fbw7 function.  相似文献   

14.
The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.  相似文献   

15.
Mutations leading to aberrant cytoplasmic localization of nucleophosmin (NPM) are the most frequent genetic alteration in acute myelogenous leukemia (AML). NPM binds the Arf tumor suppressor and protects it from degradation. The AML-associated NPM mutant (NPMmut) also binds p19Arf but is unable to protect it from degradation, which suggests that inactivation of p19Arf contributes to leukemogenesis in AMLs. We report here that NPM regulates turnover of the c-Myc oncoprotein by acting on the F-box protein Fbw7gamma, a component of the E3 ligase complex involved in the ubiquitination and proteasome degradation of c-Myc. NPM was required for nucleolar localization and stabilization of Fbw7gamma. As a consequence, c-Myc was stabilized in cells lacking NPM. Expression of NPMmut also led to c-Myc stabilization because of its ability to interact with Fbw7gamma and delocalize it to the cytoplasm, where it is degraded. Because Fbw7 induces degradation of other growth-promoting proteins, the NPM-Fbw7 interaction emerges as a central tumor suppressor mechanism in human cancer.  相似文献   

16.
Schülein C  Eilers M  Popov N 《FEBS letters》2011,585(14):2151-2157
The Fbw7 tumor suppressor gene encodes the substrate recognition subunit of the SCF ubiquitin ligase, which targets for degradation a range of oncogenic proteins in a phosphorylation-dependent manner. Substrate phosphorylation is thought to be the main mechanism that ensures timely destruction of Fbw7 substrates. We show here that PI3K dependent phosphorylation of Fbw7 stimulates its ability to ubiquitinate and degrade its substrates. Mutation of the phosphorylation site destabilizes Fbw7 and attenuates degradation of cyclin E and Myc leading to the enhanced expression of a subset of Myc target genes. We suggest that PI3K-dependent phosphorylation of Fbw7 controls the balance between turnover of Fbw7 and its substrates to fine-tune their activity.  相似文献   

17.
We previously demonstrated caspase-mediated cleavage of p130cas during apoptosis and identified two caspase-3 cleavage sites [1]. In this study, we investigated the phosphorylation-dependent cleavage of p130cas in apoptotic Rat-1 fibroblast cells. Lysophosphatidic acid and fibronectin induced p130cas phosphorylation, which in turn resulted in resistance to caspase-mediated cleavage. Alternatively, dephosphorylation by calf intestinal alkaline phosphatase, PP1, and LAR stimulated cleavage of p130cas by caspase-3, generating a 31-kDa fragment. During apoptosis, p130cas dephosphorylation seems to precede its cleavage. The phosphorylation of tyrosine and serine residues immediately adjacent to the two cleavage sites (DVPD(416) and DSPD(748)) strongly affected p130cas cleavage by caspase-3, both in vitro and in vivo. Furthermore, the generation of the 31-kDa cleavage fragment was strongly regulated by phosphorylation of a tyrosine residue at position 751 (DSPD(748) and GQY(751)). Our results collectively suggest that degradation of p130cas during apoptosis is modulated in a phosphorylation-dependent manner.  相似文献   

18.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Previous studies have shown that hPNAS-4 can inhibit tumor growth when over-expressed in ovarian cancer cells. However, the underlying action mechanism remains elusive. In this work, we found that hPNAS-4 expression was significantly increased in SKOV3 cells when exposed to cisplatin, methyl methanesulfonate or mitomycin C, and that its overexpression could induce proliferation inhibition, S phase arrest and apoptosis in A2780s and SKOV3 ovarian cancer cells. The S phase arrest caused by hPNAS-4 was associated with up-regulation of p21. p21 is p53-dispensable and correlates with activation of ERK, and activation of the Cdc25A-Cdk2-Cyclin E/Cyclin A pathway, while the pro-apoptotic effects of hPNAS-4 were mediated by activation of caspase-9 and -3 other than caspase-8, and accompanied by release of AIF, Smac and cytochrome c into the cytosol. Taken together, these data suggest a new mechanism by which hPNAS-4 inhibits proliferation of ovarian cancer cells by inducing S phase arrest and apoptosis via activation of Cdc25A-Cdk2-Cyclin E/Cyclin A axis and mitochondrial dysfunction-mediated caspase-dependent and -independent apoptotic pathways. To our knowledge, we provide the first molecular evidence for the potential application of hPNAS-4 as a novel target in ovarian cancer gene therapy.  相似文献   

19.
20.
The COP9 signalosome (CSN) is an eight-subunit complex that regulates multiple signaling and cell cycle pathways. Here we link the CSN to the degradation of Cyclin E, which promotes the G1-S transition in the cell cycle and then is rapidly degraded by the ubiquitin-proteasome pathway. Using CSN4 and CSN5/Jab1 mutants, we show that the CSN acts during Drosophila oogenesis to remove Nedd8 from Cullin1, a subunit of the SCF ubiquitin ligase. Overexpression of Cyclin E causes similar defects as mutations in CSN or SCF(Ago) subunits: extra divisions or, in contrast, cell cycle arrest and polyploidy. Because the phenotypes are so similar and because CSN and Cyclin E mutations reciprocally suppress each other, Cyclin E appears to be the major target of the CSN during early oogenesis. Genetic interactions among CSN, SCF, and proteasome subunits further confirm CSN involvement in ubiquitin-mediated Cyclin E degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号