首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In endothelial cells, transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation and migration, the ALK-1/Smads 1/5/8 pathway and the ALK-5/Smads 2/3 pathway. TGF-beta signaling through these pathways is further regulated in endothelial cells by the endothelial specific TGF-beta superfamily co-receptor, endoglin. The importance of endoglin, ALK-1, and ALK-5 in endothelial biology is underscored by the embryonic lethal phenotypes of knock-outs in mice due to defects in angiogenesis, and by the presence of disease-causing mutations in these genes in human vascular diseases. However, the mechanism of action of endoglin is not well defined. Here we define a novel interaction between endoglin and the scaffolding protein beta-arrestin2. Both co-immunoprecipitation and fluorescence confocal studies demonstrate the specific interaction between endoglin and beta-arrestin2 in endothelial cells, enhanced by ALK-1 and to a lesser extent by the type II TGF-beta receptor. The endoglin/beta-arrestin2 interaction results in endoglin internalization and co-accumulation of endoglin and beta-arrestin2 in endocytic vesicles. Whereas endoglin did not have a direct impact on either Smad 2/3 or Smad 1/5/8 activation, endoglin antagonized TGF-beta-mediated ERK signaling, altered the subcellular distribution of activated ERK, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with beta-arrestin2. Reciprocally, small interfering RNA-mediated silencing of endogenous beta-arrestin2 expression restored TGF-beta-mediated ERK activation and increased endothelial cell migration in an endoglin-dependent manner. These studies define a novel function for endoglin, and further expand the roles mediated by the ubiquitous scaffolding protein beta-arrestin2.  相似文献   

2.
Transforming growth factor-beta (TGF-beta) signaling in endothelial cells is able to modulate angiogenesis and vascular remodeling, although the underlying molecular mechanisms remain poorly understood. Endoglin and ALK-1 are components of the TGF-beta receptor complex, predominantly expressed in endothelial cells, and mutations in either endoglin or ALK-1 genes are responsible for the vascular dysplasia known as hereditary hemorrhagic telangiectasia. Here we find that the extracellular and cytoplasmic domains of the auxiliary TGF-beta receptor endoglin interact with ALK-1 (a type I TGF-beta receptor). In addition, endoglin potentiates TGF-beta/ALK1 signaling, with the extracellular domain of endoglin contributing to this functional cooperation between endoglin and ALK-1. By contrast, endoglin appears to interfere with TGF-beta/ALK-5 signaling. These results suggest that the functional association of endoglin with ALK-1 is critical for the endothelial responses to TGF-beta.  相似文献   

3.
Endoglin (CD105) is an endothelial-specific transforming growth factor β (TGF-β) coreceptor essential for angiogenesis and vascular homeostasis. Although endoglin dysfunction contributes to numerous vascular conditions, the mechanism of endoglin action remains poorly understood. Here we report a novel mechanism in which endoglin and Gα-interacting protein C-terminus-interacting protein (GIPC)-mediated trafficking of phosphatidylinositol 3-kinase (PI3K) regulates endothelial signaling and function. We demonstrate that endoglin interacts with the PI3K subunits p110α and p85 via GIPC to recruit and activate PI3K and Akt at the cell membrane. Opposing ligand-induced effects are observed in which TGF-β1 attenuates, whereas bone morphogenetic protein-9 enhances, endoglin/GIPC-mediated membrane scaffolding of PI3K and Akt to alter endothelial capillary tube stability in vitro. Moreover, we employ the first transgenic zebrafish model for endoglin to demonstrate that GIPC is a critical component of endoglin function during developmental angiogenesis in vivo. These studies define a novel non-Smad function for endoglin and GIPC in regulating endothelial cell function during angiogenesis.  相似文献   

4.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

5.
Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogenesis. Mutations in endoglin and activin receptor-like kinase 1 (ALK1), an endothelial specific TGF-beta type I receptor, have been linked to the vascular disorder, hereditary haemorrhagic telangiectasia. However, the function of endoglin in TGF-beta/ALK signalling has remained unclear. Here we report that endoglin is required for efficient TGF-beta/ALK1 signalling, which indirectly inhibits TGF-beta/ALK5 signalling. Endothelial cells lacking endoglin do not grow because TGF-beta/ALK1 signalling is reduced and TGF-beta/ALK5 signalling is increased. Surviving cells adapt to this imbalance by downregulating ALK5 expression in order to proliferate. The ability of endoglin to promote ALK1 signalling also explains why ectopic endoglin expression in endothelial cells promotes proliferation and blocks TGF-beta-induced growth arrest by indirectly reducing TGF-beta/ALK5 signalling. Our results indicate a pivotal role for endoglin in the balance of ALK1 and ALK5 signalling to regulate endothelial cell proliferation.  相似文献   

6.
Endoglin is an endothelial-specific transforming growth factor beta (TGF-β) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-β signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified β-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and β-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-β-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/β-arrestin2 interaction is disrupted. Given that TGF-β-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.  相似文献   

7.
Germ line mutations in one of two distinct genes, endoglin or ALK-1, cause hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder of localized angiodysplasia. Both genes encode endothelial cell receptors for the transforming growth factor beta (TGF-beta) ligand superfamily. Endoglin has homology to the type III receptor, betaglycan, although its exact role in TGF-beta signaling is unclear. Activin receptor-like kinase 1 (ALK-1) has homology to the type I receptor family, but its ligand and corresponding type II receptor are unknown. In order to identify the ligand and type II receptor for ALK-1 and to investigate the role of endoglin in ALK-1 signaling, we devised a chimeric receptor signaling assay by exchanging the kinase domain of ALK-1 with either the TGF-beta type I receptor or the activin type IB receptor, both of which can activate an inducible PAI-1 promoter. We show that TGF-beta1 and TGF-beta3, as well as a third unknown ligand present in serum, can activate chimeric ALK-1. HHT-associated missense mutations in the ALK-1 extracellular domain abrogate signaling. The ALK-1/ligand interaction is mediated by the type II TGF-beta receptor for TGF-beta and most likely through the activin type II or type IIB receptors for the serum ligand. Endoglin is a bifunctional receptor partner since it can bind to ALK-1 as well as to type I TGF-beta receptor. These data suggest that HHT pathogenesis involves disruption of a complex network of positive and negative angiogenic factors, involving TGF-beta, a new unknown ligand, and their corresponding receptors.  相似文献   

8.
9.
10.
11.
12.
Endoglin is an accessory receptor for transforming growth factor beta (TGFbeta) in endothelial cells, essential for vascular development. Its pivotal role in angiogenesis is underscored in Endoglin null (Eng-/-) murine embryos, which die at mid-gestation (E10.5) from impaired yolk sac vessel formation. Moreover, mutations in endoglin and the endothelial-specific TGFbeta type I receptor, ALK1, are linked to hereditary hemorrhagic telangiectasia. To determine the role of endoglin in TGFbeta pathways, we derived murine endothelial cell lines from Eng+/+ and Eng-/- embryos (E9.0). Whereas Eng+/+ cells were only partially growth inhibited by TGFbeta, Eng-/- cells displayed a potent anti-proliferative response. TGFbeta-dependent Smad2 phosphorylation and Smad2/3 translocation were unchanged in the Eng-/- cells. In contrast, TGFbeta treatment led to a more rapid activation of the Smad1/5 pathway in Eng null cells that was apparent at lower TGFbeta concentrations. Enhanced activity of the Smad1 pathway in Eng-/- cells was reflected in higher expression of ALK1-dependent genes such as Id1, Smad6, and Smad7. Analysis of cell surface receptors revealed that the TGFbeta type I receptor, ALK5, which is required for ALK1 function, was increased in Eng-/- cells. TGFbeta receptor complexes were less numerous but displayed a higher binding affinity. These results suggest that endoglin modulates TGFbeta signaling in endothelial cells by regulating surface TGFbeta receptors and suppressing Smad1 activation. Thus an altered balance in TGFbeta receptors and downstream Smad pathways may underlie defects in vascular development and homeostasis.  相似文献   

13.
14.
15.
Toxicarioside A is a cardenolide isolated mainly from plants and animals. Emerging evidence demonstrate that cardenolides not only have cardiac effects but also anticancer effects. In this study, we used in vivo models to investigate the antitumor activities of toxicarioside A and the potential mechanisms behind them. Murine colorectal carcinoma (CT26) and Lewis lung carcinoma (LL/2) models were established in syngeneic BALB/c and C57BL/6 mice, respectively. We found that the optimum effective dose of toxicarioside A treatment significantly suppressed tumor growth and angiogenesis in CT and LL/2 tumor models in vivo. Northern and Western blot analysis showed significant inhibition of endoglin expression in toxicarioside A-treated human umbilical vein endothelial cells (HUVECs) in vitro and tumor tissues in vivo. Toxicarioside A treatment significantly inhibited cell proliferation, migration and invasion, but did not cause significant cell apoptosis and affected other membrane protein (such as CD31 and MHC I) expression. In addition, TGF-β expression was also significantly inhibited in CT26 and LL/2 tumor cells treated with toxicarioside A. Western blot analysis indicated that Smad1 and phosphorylated Smad1 but not Smad2/3 and phosphorylated Smad2/3 were attenuated in HUVECs treated with toxicarioside A. Smad1 and Smad2/3 signaling remained unchanged in CT26 and LL/2 tumor cells treated with toxicarioside A. Endoglin knockout by small interfering RNA against endoglin induced alternations in Smad1 and Smad2/3 signaling in HUVECs. Our results indicate that toxicarioside A suppresses tumor growth through inhibition of endoglin-related tumor angiogenesis, which involves in the endoglin/TGF-β signal pathway.  相似文献   

16.
17.
18.
Smads are intracellular signaling mediators for TGF-beta superfamily. Smad1 and Smad5 are activated by BMP receptors. Here, we have cloned mouse Smad8 and functionally characterized its ability to transduce signals from BMP receptors. Constitutively active BMP type I receptors, ALK-3 and ALK-6, as well as ALK-2, were phosphorylated Smad8 and induced Smad8 interaction with Smad4. Nuclear translocation of Smad8 was stimulated by constitutively active BMP type I receptors. In contrast, constitutively active TGF-beta type I receptor, ALK-5, did not exhibit any action on Smad8. Smad8 and Smad4 cooperatively induced the promoter of Xvent2, a homeobox gene that responds specifically to BMP signaling. Dominant-negative Smad8 was shown to inhibit the increase of alkaline phosphatase activity induced by BMP-2 on pluripotent mesenchymal C3H10T1/2 and myoblastic C2C12 cell lines. The presence of Smad8 mRNA in mouse calvaria cells and osteoblasts suggests a role of Smad8 in the osteoblast differentiation and maturation.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) plays an important role in angiogenesis and vascular function. Endoglin, a transmembrane TGF-beta binding protein, is highly expressed on vascular endothelial cells and is the target gene for the hereditary haemorrhagic telangiectasia type I (HHT1), a dominantly inherited vascular disorder. The specific function of endoglin responsible for HHT1 is believed to involve alterations in TGF-beta responses. The initial interactions on the cell surface between endoglin and TGF-beta receptors may be an important mechanism by which endoglin modulates TGF-beta signalling, and thereby responses. Here it is shown that on human microvascular endothelial cells, endoglin is co-expressed and is associated with betaglycan, a TGF-beta accessory receptor with which endoglin shares limited amino acid homology. This complex formation may occur in either a ligand-dependent or a ligand-independent manner. In addition, the occurrence of three higher order complexes containing endoglin, type II and/or type I TGF-beta receptors, on these cells is demonstrated. Our findings suggest that endoglin may modify TGF-beta signalling by interacting with both betaglycan and the TGF-beta signalling receptors at physiological receptor concentrations and ratios.  相似文献   

20.
Endoglin, a dimeric membrane glycoprotein expressed at high levels on human vascular endothelial cells, shares regions of sequence identity with betaglycan, a major binding protein for transforming growth factor-beta (TGF-beta) that co-exists with TGF-beta receptors I and II in a variety of cell lines but is low or absent in endothelial cells. We have examined whether endoglin also binds TGF-beta and demonstrate here that the major TGF-beta 1-binding protein co-existing with TGF-beta receptors I and II on human umbilical vein endothelial cells is endoglin, as determined by specific immunoprecipitation of endoglin affinity-labeled with 125I-TGF-beta. Furthermore, endoglin ectopically expressed in COS cells binds TGF-beta 1. Competition affinity-labeling experiments showed that endoglin binds TGF-beta 1 (KD approximately 50 pM) and TGF-beta 3 with high affinity but fails to bind TGF-beta 2. This difference in affinity of endoglin for the TGF-beta isoforms is in contrast to beta-glycan which recognizes all three isoforms. TGF-beta however is binding with high affinity to only a small fraction of the available endoglin molecules, suggesting that some rate-limiting event is required to sustain TGF-beta binding to endoglin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号