首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. The insufficient vascularization of this tissue prevents it from healing completely after extreme tearing or rupture, creating a need for ACL grafts for reconstruction. The limitations of existing grafts have motivated the investigation of tissue-engineered ACL grafts. A successful tissue-engineered graft must possess mechanical properties similar to the ACL; to date no commercially available synthetic graft has achieved this. To accomplish this goal we have combined the techniques of polymer fiber braiding and twisting to design a novel poly L-lactic acid (PLLA) braid-twist scaffold for ACL tissue engineering. The scaffold is designed to accurately mimic the biomechanical profile and mechanical properties of the ACL. In this study, braid-twist scaffolds were constructed and compared to braided scaffolds and twisted fiber scaffolds. The addition of fiber twisting to the braided scaffold resulted in a significant increase in the ultimate tensile strength, an increase in ultimate strain, and an increase in the length of the toe region in these constructs over scaffolds that were braided. Based on the findings of this study, the braid-twist scaffold studied was found to be a promising construct for tissue engineering of the ACL.  相似文献   

2.
Women are at greater risk of tearing their knee anterior cruciate ligament (ACL) than men participating in similar athletic activities. There is currently no conclusive explanation for this disparity; however, as ACL injuries in women have been linked with estrogen fluctuations during the menstrual cycle, one hypothesis is that estrogen has a direct detrimental effect on knee ligament mechanical properties. This study investigated the influence of estrogen and its receptors (ER alpha and ER beta) on knee ligament mechanical properties. This was achieved by testing the viscoelastic and tensile mechanical properties of knee medial collateral ligaments (MCL) and ACLs from: 1) male Sprague-Dawley rats treated with either estrogen (17alpha-ethynylestradiol; 0.03 mg/kg) or an ER alpha-specific agonist (propyl pyrazole triol; 2 mg/kg), and 2) female mice with a null mutation of the gene encoding for ER beta. Estrogen treatment had no significant effects on the viscoelastic or tensile mechanical properties of the rat MCL or ACL. Similarly, pharmacological stimulation of ER alpha using a selective agonist in rats and genetic modulation of ER beta by null mutation of its gene in mice did not influence MCL or ACL properties. These data indicate that estrogen does not have a major direct effect on ligament mechanical properties. Energies for the prevention of the disproportionately high rate of knee ligament injuries in women may be better spent focusing on more established and modifiable risk factors, such as abnormalities in neuromuscular control about the knee.  相似文献   

3.
The knee ligaments and patellar tendon function in concert with each other and other joint tissues, and are adapted to their specific physiological function via geometry and material properties. However, it is not well known how the viscoelastic and quasi-static material properties compare between the ligaments. The purpose of this study was to characterize and compare these material properties between the knee ligaments and patellar tendon.Dumbbell-shaped tensile test samples were cut from bovine knee ligaments (ACL, LCL, MCL, PCL) and patellar tendon (PT) and subjected to tensile testing (n = 10 per ligament type). A sinusoidal loading test was performed at 8% strain with 0.5% strain amplitude using 0.1, 0.5 and 1 Hz frequencies. Subsequently, an ultimate tensile test was performed to investigate the stress-strain characteristics.At 0.1 Hz, the phase difference between stress and strain was higher in LCL compared with ACL, PCL and PT (p < 0.05), and at 0.5 Hz that was higher in LCL compared with all other ligaments and PT (p < 0.05). PT had the longest toe-region strain (p < 0.05 compared with PCL and MCL) and MCL had the highest linear and strain-dependent modulus, and toughness (p < 0.05 compared with ACL, LCL and PT).The results indicate that LCL is more viscous than other ligaments at low-frequency loads. MCL was the stiffest and toughest, and its modulus increased most steeply at the toe-region, possibly implying a greater amount of collagen. This study improves the knowledge about elastic, viscoelastic and failure properties of the knee ligaments and PT.  相似文献   

4.
目的:通过对聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)材料的编织和力学性能的分析,初步探讨使用该材料构建组织工程韧带支架的可行性。方法:将不同强度的PET单纤维通过经编法编织成支架材料;然后使用电子拉力机对编织好的支架材料以及消毒处理后的支架材料进行力学性能测试并进行分析。结果:PET编织构建的支架材料结构稳定,其极限抗张强度已达到了前交叉韧带的力学要求。辐照消毒对支架材料的力学性能无短期影响。结论:该支架材料编织结构设计合理,具有优良的力学性能,消毒后对其力学性能无短期影响,有望通过改进生物学性能后成为一种较理想的组织工程前交叉韧带支架材料。  相似文献   

5.
Large variable deformations of the ligament cannot be adequately quantified by one-dimensional and/or localized measurements. To obtain accurate measurement of non-uniform strains over the entire surface of anterior cruciate ligament (ACL), we used a photoelastic coating technique and a method that allowed us to photograph an ACL around its longitudinal axis. A cadaver knee was modified to expose its ACL for observation, and the ligament was then coated with a photoelastic material. The knee was locked in a jig that allowed simulation of natural knee motion. The jig containing the knee was then mounted on a stand, which allowed the exposed ACL to be photographed from any angle around its longitudinal axis while set at a chosen degree of knee flexion. The jig itself was rotated on its stand so as to obtain a panoramic view of the ACL at a given knee angle. The obtained images of the photoelastic fringe patterns yielded significant information for understanding how the strain distributions along the fiber bundles change in association with knee motion. From the results we obtained using the photoelastic measuring method, we reached the following conclusions. Reciprocal functioning between the anterior and the posterior bundles from extension to flexion of the knee does occur. Strain distribution is not uniform even along the same bundle. The strain behavior of the ACL under uniaxial tensile test does not duplicate the conditions in which the ACL is damaged during knee motion. The differences in strains on the ACL under active and passive knee motions may not be as large as those reported previously in the literature.  相似文献   

6.
Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery   总被引:1,自引:0,他引:1  
A protein loaded three-dimensional scaffold can be used for protein delivery and bone tissue regeneration. The main objective of this project was to develop recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded poly(D,L-lactide-co-glycolide)/hydroxylapatite (PLGA/HAp) composite fibrous scaffolds through a promising fabrication technique, electrospinning. In vitro release of BMP-2 from these scaffolds, and the attachment ability and viability of marrow derived messenchymal stem cells (MSCs) in the presence of the scaffolds were investigated. The PLGA/HAp composite scaffolds developed in this study exhibit good morphology and it was observed that HAp nanoparticles were homogeneously dispersed inside PLGA matrix within the scaffold. The composite scaffolds allowed sustained (2-8 weeks) release of BMP-2 whose release rate was accelerated with increasing HAp content. It was also shown that BMP-2 protein successfully maintained its integrity and natural conformations after undergoing the process of electrospinning. Cell culture experiments showed that the encapsulation of HAp could enhance cell attachment to scaffolds and lower cytotoxicity.  相似文献   

7.
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.  相似文献   

8.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

9.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

10.
One of the key tenets of tissue engineering is to develop scaffold materials with favorable biodegradability, surface properties, outstanding mechanical strength and controlled drug release property. In this study, we generated core-sheath nanofibers composed of poly (?-caprolactone) (PCL) and silk fibroin (SF) blends via emulsion electrospinning. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle and tensile measurements. An in vitro FITC release study was conducted to evaluate sustained release potential of the core-sheath structured nanofibers. We found that the conformation of SF contained in PCL/SF composite nanofibers was transformed from random coil to β-sheet when treated with methanol, leading to improved crystallinity and tensile strength of nanofibrous scaffolds. The hydrophobicity and diameter of nanofibers decreased when we increased the content of SF in PCL/SF composite nanofibers. Furthermore, we evaluated the potential of fabricated PCL/SF composite nanofibers as scaffold in vitro. The results confirmed that fabricated PCL/SF scaffolds improved cell attachment and proliferation. Our results demonstrated the feasibility to generate core-sheath nanofibers composed of PCL and SF using a single-nozzle technique. The produced nanofibrous scaffolds with sustained drug release have potential application in tissue engineering.  相似文献   

11.
Recent advances in organ printing technology for applications relating to medical interventions and organ replacement are described. Organ printing refers to the placement of various cell types into a soft scaffold fabricated according to a computer-aided design template using a single device. Computer aided scaffold topology design has recently gained attention as a viable option to achieve function and mass transport requirements within tissue engineering scaffolds. An exciting advance pioneered in our laboratory is that of simultaneous printing of cells and biomaterials, which allows precise placement of cells and proteins within 3-D hydrogel structures. This advance raises the possibility of spatially controlling not only the scaffold structure, but also the type of tissue that can be grown within the scaffold and the thickness of the tissue as capillaries and vessels could be constructed within the scaffolds. Here we summarize recent advances in printing cells and materials using the same device.  相似文献   

12.
Tissue engineering offers an interesting alternative to current anterior cruciate ligament (ACL) surgeries. Indeed, a tissue-engineered solution could ideally overcome the long-term complications due to actual ACL reconstruction by being gradually replaced by biological tissue. Key requirements concerning the ideal scaffold for ligament tissue engineering are numerous and concern its mechanical properties, biochemical nature, and morphology. This study is aimed at predicting the morphology of a novel scaffold for ligament tissue engineering, based on multilayer braided biodegradable copoly(lactic acid-co-(e-caprolactone)) (PLCL) fibers The process used to create the scaffold is briefly presented, and the degradations of the material before and after the scaffold processing are compared. The process offers varying parameters, such as the number of layers in the scaffold, the pitch length of the braid, and the fibers' diameter. The prediction of the morphology in terms of pore size distribution and pores interconnectivity as a function of these parameters is performed numerically using an original method based on a virtual scaffold. The virtual scaffold geometry and the prediction of pore size distribution are evaluated by comparison with experimental results. The presented process permits creation of a tailorable scaffold for ligament tissue engineering using basic equipment and from minimum amounts of raw material. The virtual scaffold geometry closely mimics the geometry of real scaffolds, and the prediction of the pore size distribution is found to be in good accordance with measurements on real scaffolds. The scaffold offers an interconnected network of pores the sizes of which are adjustable by playing on the process parameters and are able to match the ideal pore size reported for tissue ingrowth. The adjustability of the presented scaffold could permit its application in both classical ACL reconstructions and anatomical double-bundle reconstructions. The precise knowledge of the scaffold morphology using the virtual scaffold will be useful to interpret the activity of cells once it will be seeded into the scaffold. An interesting perspective of the present work is to perform a similar study aiming at predicting the mechanical response of the scaffold according to the same process parameters, by implanting the virtual scaffold into a finite element algorithm.  相似文献   

13.
Bio-composite scaffolds were prepared by freeze-drying using poly(3-hydroxubutyrate-co-4-hydroxubutyrate) (P(3HB-co-4HB)) and bacterial cellulose (BC) as raw materials and trifluoroacetic acid (TFA) as co-solvent. The characteristics of the composite scaffold were investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), water contact angle measurement and tensile testing. Preliminary biodegradation test was performed for P(3HB-co-4HB) and P(3HB-co-4HB)/BC composite scaffold in buffer solution and enzyme solution. The biocompatibility of the composite scaffold was preliminarily evaluated by cell adhesion studies using Chinese Hamster Lung (CHL) fibroblast cells. The cells incubated with composite scaffold for 48 h were capable of forming cell adhesion and proliferation, which showed better biocompatibility than pure P(3HB-co-4HB) scaffold. Thus, the prepared P(3HB-co-4HB)/BC composite scaffold was bioactive and may be suitable for cell adhesion/attachment suggesting that these scaffolds can be used for wound dressing or tissue-engineering scaffolds.  相似文献   

14.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

15.
The medial collateral (MCL) and the anterior cruciate ligament (ACL) of the rat's knee are frequently used in biomedical research and occasionally in ligament healing studies. The contralateral normal ligament serves as a control. In this study the presence of symmetry in the biomechanical properties of the MCL and the ACL was investigated. Bilateral femur-MCL-tibia and femur-ACL-tibia preparations were obtained from the hind limbs of sixty rats and were subjected to tensile testing to failure under the same loading conditions. Tensile load to failure, stiffness and energy absorption capacity were measured and the mode of failure was recorded. All biomechanical parameters were not significantly different between the two knees of the same animal, although significant individual variation was evident. The most common mechanism of failure was mid-substance tear. Symmetry seems to exist in the biomechanical properties of the MCL and the ACL in the rat knee. When ligament healing is evaluated, increased group size is necessary and the use of a normal control group may be advisable. The contralateral normal knee ligament may serve as a control when the properties of an injured ligament are evaluated and when the parameters of tensile testing failure under similar load conditions are applied.  相似文献   

16.
A common problem in the design of tissue engineered scaffolds using electrospun scaffolds is the poor cellular infiltration into the structure. To tackle this issue, three approaches to scaffold design using electrospinning were investigated: selective leaching of a water-soluble fiber phase (poly ethylene oxide (PEO) or gelatin), the use of micron-sized fibers as the scaffold, and a combination of micron-sized fibers with codeposition of a hyaluronic acid-derivative hydrogel, Heprasil. These designs were achieved by modifying a conventional electrospinning system with two charged capillaries and a rotating mandrel collector. Three types of scaffolds were fabricated: medical grade poly(epsilon-caprolactone)/collagen (mPCL/Col) cospun with PEO or gelatin, mPCL/Col meshes with micron-sized fibers, and mPCL/Col microfibers cosprayed with Heprasil. All three scaffold types supported attachment and proliferation of human fetal osteoblasts. However, selective leaching only marginally improved cellular infiltration when compared to meshes obtained by conventional electrospinning. Better cell penetration was seen in mPCL/Col microfibers, and this effect was more pronounced when Heprasil regions were present in the structure. Thus, such techniques could be further exploited for the design of cell permeable fibrous meshes for tissue engineering applications.  相似文献   

17.
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications.  相似文献   

18.
Ifkovits JL  Wu K  Mauck RL  Burdick JA 《PloS one》2010,5(12):e15717
Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus). The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate) (PGS), with changes in fiber alignment (non-aligned (NA) versus aligned (AL)) and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO)). PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ~3-240 kPa, failing within the range of properties (<300 kPa) appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ~90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ~13% and ~16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important considerations in controlling tissue formation.  相似文献   

19.
The knee joint is partially stabilized by the interaction of multiple ligament structures. This study tested the interdependent functions of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) by evaluating the effects of ACL deficiency on local MCL strain while simultaneously measuring joint kinematics under specific loading scenarios. A structural testing machine applied anterior translation and valgus rotation (limits 100 N and 10 N m, respectively) to the tibia of ten human cadaveric knees with the ACL intact or severed. A three-dimensional motion analysis system measured joint kinematics and MCL tissue strain in 18 regions of the superficial MCL. ACL deficiency significantly increased MCL strains by 1.8% (p<0.05) during anterior translation, bringing ligament fibers to strain levels characteristic of microtrauma. In contrast, ACL transection had no effect on MCL strains during valgus rotation (increase of only 0.1%). Therefore, isolated valgus rotation in the ACL-deficient knee was nondetrimental to the MCL. The ACL was also found to promote internal tibial rotation during anterior translation, which in turn decreased strains near the femoral insertion of the MCL. These data advance the basic structure-function understanding of the MCL, and may benefit the treatment of ACL injuries by improving the knowledge of ACL function and clarifying motions that are potentially harmful to secondary stabilizers.  相似文献   

20.
A nanofibrous core-sheath structured scaffold incorporated with bioactive agents is supposed to promote cell migration, proliferation, and gene expressions through the controllable and sustainable release of bioactive agents from the fibers and the preservation of bioactivity. Here we present a novel and effective emulsion electrospinning method for obtaining fluorescein isothiocyanate-dextran (FITC-dextran)/poly(lactic-co-glycolic acid) (PLGA) and type I collagen/PLGA fibrous composite scaffolds. Core-sheath structured fibers with average diameters of 665 nm for FITC-dextran/PLGA and 567 nm for collagen/PLGA were successfully fabricated. In vitro-release profile shows sustained release of encapsulated FITC-dextran from FITC-dextran/PLGA fibers for as long as 7 weeks. The osteoblastic activity of the collagen/PLGA nanofibrous scaffold was investigated employing the osteoblastic-like MC3T3-E1 cell line. The results of the lactate dehydrogenase assay suggested excellent cytocompatibility. Cell proliferation and alkaline phosphatase activity were also ameliorated on this emulsion-electrospun collagen/PLGA fibrous scaffold. All the results indicated that this composite scaffold could support the early stages of osteoblast behavior as well as the immediate/late stages. The emulsion electrospinning process has potential for application in drug-release devices and as a 3-D scaffold in bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号