首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three cDNAs for chimeras between cytochrome P-450s (pHP3 and pHP2-1) were constructed and inserted between the alcohol dehydrogenase promoter and terminator regions of the yeast expression vector pAAH5 to form expression plasmids, pAH3P2, pAH3E2, and pAH3A2. pAH3P2 contained the entire coding sequence of cytochrome P-450 (pHP2-1) except for the 3rd, the 8th, the 36th, and the 42nd residues of the total of 490 amino acids. Nucleotide sequences of pAH3P2 were replaced with those of cytochrome P-450 (pHP3) in the region coding for the NH2-terminal 210 and 262 amino acid residues to yield pAH3E2 and pAH3A2, respectively. The three expression plasmids were introduced into Saccharomyces cerevisiae AH22 cells and cytochrome P-450 s (3P2, 3E2, and 3A2) were purified from the microsomal fractions of the transformed yeast cells. In the oxidized state either of the cytochromes exhibited a low- and high-spin mixed-type spectrum of cytochrome P-450. The reduced CO complex of the cytochromes showed a Soret absorption maximum at 450 nm. When laurate or caprate was added to ferric cytochrome P-450 s (3P2 and 3E2), the spectrum was converted to that of the typical high-spin type, indicating the binding of the fatty acids to the substrate site of the cytochromes. On the other hand, the addition of the fatty acids to ferric cytochrome P-450 (3A2) induced no spectral change. Only chemicals having a carboxyl group caused such spectral conversion of cytochrome P-450 (3P2) among dodecyl compounds examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2   总被引:7,自引:0,他引:7  
Acetaminophen (APAP), a widely used over-the-counter analgesic, is known to cause hepatotoxicity when ingested in large quantities in both animals and man, especially when administered after chronic ethanol consumption. Hepatotoxicity stems from APAP activation by microsomal P450 monooxygenases to a reactive metabolite that binds to tissue macromolecules, thereby initiating cellular necrosis. Alcohol consumption also causes the induction of P450IIE1, a liver microsomal enzyme that in reconstitution studies has proven to be an effective catalyst of APAP oxidation. Thus, elevated microsomal P450IIE1 levels could explain not only the known increase in APAP bioactivating activity of liver microsomes after prolonged ethanol ingestion but also the enhanced susceptibility to APAP toxicity. We therefore examined the role of P450IIE1 in human liver microsomal APAP activation. Liver microsomes from seven non-alcoholic subjects were found to convert 1 mM APAP to a reactive intermediate (detected as an APAP-cysteine conjugate by high-pressure liquid chromatography) at a rate of 0.25 +/- 0.1 nmol conjugate formed/min/nmol microsomal P450 (mean +/- SD), whereas at 10 mM, this rate increased to 0.73 +/- 0.2 nmol product/min/nmol P450. In a reconstituted system, purified human liver P450IIE1 catalyzed APAP activation at rates threefold higher than those obtained with microsomes whereas two other human P450s, P450IIC8 and P450IIC9, exhibited negligible APAP-oxidizing activity. Monospecific antibodies (IgG) directed against human P450IIE1 inhibited APAP activation in each of the human samples, with anti-P450IIE1 IgG-mediated inhibition averaging 52% (range = 30-78%) of the rates determined in the presence of control IgG. The ability of anti-P450IIE1 IgG to inhibit only one-half of the total APAP activation by microsomes suggests, however, that other P450 isozymes besides P450IIE1 contribute to bioactivation of this compound in human liver. Of the other purified P450 isozymes examined, a beta-naphthoflavone (BNF)-inducible hamster liver P450 promoted APAP activation at rates even higher than those obtained with human P450IIE1. The extensive APAP-oxidizing capacity of this hamster P450, designated P450IA2 based upon its similarity to rat P450d and rabbit form 4 in terms of NH2-terminal amino acid sequence, spectral characteristics, immunochemical properties, and inducibility by BNF, agrees with previous reports concerning the APAP substrate specificity of the rat and rabbit P450IA2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The potential for enhanced translational processing of P450IIE1 mRNA during the early phase of P450IIE1 induction by pyridine or acetone was assessed by hybridization analysis of polyribosomal P450IIE1 mRNA distribution in rat hepatic tissue. Optical absorbance profiles of polyribosomal fractions exhibited an apparent shift at 5 h following pyridine administration relative to control. Slot and Northern blot analyses for P450IIE1 mRNA in the cytoplasmic extracts isolated from 5 h pyridine-treated rats demonstrated a shift in distribution of P450IIE1 message toward heavier polyribosomal fractions and Northern blot analysis suggested the presence of different populations of P450IIE1 mRNA. Slot blot analyses also demonstrated a shift in the polyribosomal distribution of P450IIE1 mRNA at 12 h following pyridine treatment; in contrast, hybridization analysis for P450IA1 revealed no shift in polyribosomal distribution of P450IA1 mRNA. Acute acetone administration to animals also resulted in a similar shift in polyribosomal distribution of P450IIE1 mRNA as compared to control. These data suggest that P450IIE1 mRNA shifts toward larger polyribosomes following acute exposure of animals to pyridine or acetone and provide evidence that induction of P450IIE1 at early times following acute pyridine or acetone administration involves enhanced translational efficiency through increased loading of ribosomes on P450IIE1 mRNA.  相似文献   

4.
5.
Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo   总被引:4,自引:0,他引:4  
Hepatic microsomes, obtained from rats pair-fed liquid diets supplemented with either ethanol or an isocaloric amount of carbohydrates (for 4 weeks), were subjected to crossed immunoelectrophoresis. Anti-acetaldehyde adduct-specific immunoglobulin reacted on the protein blots with a single major 52,000 dalton polypeptide. This same protein was recognized by antibodies specific for P450IIE1, an ethanol-inducible P450 isozyme. Furthermore, a single protein, also reactive with anti-P450IIE1 IgG, was isolated from liver microsomes of ethanol-fed rats by immunoaffinity chromatography on Sepharose-conjugated anti-acetaldehyde adduct IgG. These results indicate that P450IIE1 is a target protein for acetaldehyde binding in liver microsomes in vivo.  相似文献   

6.
A standard calcium phosphate technique was used to obtain transient expression of cDNAs for rat liver cytochrome P450s in COS-1 cells. Cells transfected with a pMT2-based vector expressing P450IA2 cDNA (pMT2-IA2) had high acetanilide-4-hydroxylase activity and very low aryl hydrocarbon hydroxylase (AHH) activity. Cells transfected with a hybrid expression vector, pMT2-IA2/IA1, coding for a P450IA2/IA1 fusion protein (consisting of the amino-terminal region of P450IA2 and the central and carboxy-terminal regions of P450IA1) had high AHH activity. This result and other data indicate that the P450IA2/IA1 fusion protein has the substrate specificity of P450IA1. Extracts of cells transfected with pMT2-IA2 readily converted 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and related food-derived promutagens into mutagenic forms. Extracts of cells transfected with pMT2-IA2/IA1 showed efficient activation of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp P-2). To facilitate comparison of activities of P450s synthesized from cDNA expression vectors, the promutagen activation assays were carried out with limiting enzyme and saturating or nearly saturating substrate concentrations. The transient expression system described here uses a standard expression vector and requires only microgram quantities of cell extract protein for activation of food-derived promutagens such as MeIQ and Trp P-2. It will be useful for identifying P450s active in promutagen activation and for analyzing structure-function relationships of different P450 molecules.  相似文献   

7.
8.
A rabbit cytochrome P-450IIE2 full-length cDNA was cloned into a yeast episomal plasmid (YEp13) between the copper-responsive yeast metallothionein gene promoter (CUP1) and the iso-1-cytochrome c gene terminator (CYC1), and the cytochrome P-450 was expressed in Saccharomyces cerevisiae. The microsomal fraction prepared from copper-treated cells exhibited a ferrous carbonyl difference spectrum with an absorption maximum at 451 nm and contained approximately 0.07 nmol of P-450IIE2 per mg of protein. The P-450IIE2 protein expressed in yeast microsomes was catalytically competent as judged by the NADPH-dependent deethylation of N-nitrosodiethylamine and by the oxidation of butanol. Cholate solubilization and polyethylene glycol fractionation of yeast microsomal P-450IIE2 yielded a preparation with a markedly lower specific content than that of intact microsomes, but, when 4-methylpyrazole was included during solubilization, the holoenzyme was completely stabilized.  相似文献   

9.
Summary A rat liver-derived epithelial cell line transformed withdl-ethionine and the corresponding control cell line were characterized according to morphological and cytochemical criteria to establish their origin from liver epithelium and to identify cellular changes due to transformation bydl-ethionine. The presence of intermediate junctions confirms the epithelial nature; glycogen accumulation and glucose-6-phosphatase activity confirm the hepatic origin of the cells. Persistent alterations resulting from ethionine transformation were variations in cell shape and size, focal multilayered growth, an increase in the nucleolar: nuclear ratio, and a reduction in the number of cells displaying a primary cilium. Hyperplasia of the inner nuclear membrane, elongation and branching of mitochondria, and a reduction in the length and frequency of cell junctions were also characteristic of the transformed cells.  相似文献   

10.
Western blot analysis of digitonin eluates as well as immunohistochemical analysis revealed a 30-fold higher concentration of cytochrome P-450IIE1 in the centrilobular than in the periportal regions of the rat liver. Ethanol treatment caused a selective centrilobular induction of P-450IIE1, whereas phenobarbital induced P-450IIB1/2 in both liver lobule regions. The heterogeneous distribution pattern of P-450IIE1 was also observed in cells isolated from either region and correlated to the relative content of P-450IIE1 mRNA in the two cell types. The regiospecific expression and induction of P-450IIE1 may explain why several hepatotoxins, known to be metabolized by this isozyme, primarily damage the centrilobular region in the liver.  相似文献   

11.
Among 11 isoforms of the human cytochrome P450 enzymes metabolizing xenobiotics, CYP 1A1 and CYP 1A2 were major P450 species in the metabolism of the herbicides chlortoluron and atrazine in a yeast expression system. CYP1A2 was more active in the metabolism of both herbicides than CYP1A1. The fused enzymes of CYP1A1 and CYP1A2 with yeast NADPH-cytochrome P450 oxidoreductase were functionally active in the microsomal fraction of the yeast Saccharomyces cerevisiae and showed increased specific activity towards 7-ethoxyresorufin as compared to CYP1A1 and CYP1A2 alone. Then, both fused enzymes were each expressed in the microsomes of tobacco (Nicotiana tabacum cv. Samsun NN) plants. The transgenic plants expressing the CYP1A2 fusion enzyme had higher resistance to the herbicide chlortoluron than the plants expressing the CYP1A1 fusion enzyme did. The transgenic plants expressing the CYP1A2 fused enzyme metabolized chlortoluron to a larger extent to its non-phytotoxic metabolites through N-demethylation and ring-methyl hydroxylation as compared to the plants expressing the CYP1A1 fused enzyme. Thus, the possibility of increasing the herbicide resistance in the transgenic plants by the selection of P450 species and the fusion with P450 reductase is discussed.  相似文献   

12.
13.
D Sanglard  J C Loper 《Gene》1989,76(1):121-136
The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures are discussed for their possible role in the inducibility of this gene. Expression of the P450alk gene was achieved in Saccharomyces cerevisiae using the yeast alcohol dehydrogenase expression system after removal of the P450alk gene flanking regions. The resultant expressed protein had a molecular mass slightly greater than that of P450alk from C. tropicalis. This alteration did not prevent the function and the localization of P450alk expressed in S. cerevisiae, as this organism showed an acquired microsome-bound activity for the terminal hydroxylation of lauric acid. The deduced P450alk amino acid sequence was compared with members of the nine known P450 gene families. These comparisons indicated that P450alk had a low relationship with these members and was therefore the first member (A1) of a new P450 gene family (LII).  相似文献   

14.
C Cullin  D Pompon 《Gene》1988,65(2):203-217
Mouse liver cytochrome P-450 P1 was produced in the yeast Saccharomyces cerevisiae transformed by various expression vectors. The relative efficiency of the phosphoglycerate kinase and GAL10-CYC1 promoters to direct the P-450 P1 mRNA synthesis was determined. The level of protein synthesis was found to be dependent on the amount of the 5'-noncoding sequence of the original cDNA removed during the construction. Yeast-synthesised P-450 P1 was found to be integrated into the microsomal membrane in a fully functional form, as judged by Western blotting, optical spectra and enzymatic activities. The amount of P-450 reached up to 0.6% of the microsomal protein level. A nucleotide sequence coding for a chimeric enzyme in which 40 N-terminal codons of P-450 P1 were replaced by 36 N-terminal codons of P-450 P3 was constructed and expressed in yeast. The resulting protein retained full P-450 P1 activity and was produced with a similar efficiency suggesting that the P-450 N-terminal sequence is not involved in structures critical for the substrate specificities of the P1 isoenzyme.  相似文献   

15.
Rat liver nonparenchymal cells (NPC) were prepared by pronase digestion and purified on discontinuous gradients on Nycodenz. Morphological and biochemical characterization of cell suspensions showed that they were free of contamination by hepatocytes. We have confirmed the usefulness of pyruvate kinase activity in monitoring the degree of hepatocyte contamination of NPC and we have derived an equation which allows this carry-over to be calculated. Using highly purified suspensions of NPC we have shown that they contain glucose-6-phosphatase in low but detectable levels. Spectrophotometric studies showed that they contain cytochrome P450, with a specific content of 24 +/- 5 pmole mg-1 cell protein. A potential source of error in previous studies was recognized; namely that peroxidase, present in NPC in high concentration, is able to mask the absorption due to cytochrome P450. Both the presence and inducibility of this enzyme in NPC prepared from rats pretreated with phenobarbital or 3-methylcholanthrene have been confirmed using Western blot analysis.  相似文献   

16.
A cytochrome P450 isozyme responsible for amphetamine deamination was purified from hepatic microsomes of untreated rabbits. The purification procedures consisted of a set of column chromatographies with omega-aminooctyl-Sepharose 4B, DEAE-cellulose, CM-Sephadex C-50, and hydroxyapatite. The deamination activity was determined by measuring the formation of phenylacetone after derivatization to the p-nitrobenzyloxim by HPLC. This isozyme, which was designated P450APD, showed a monomeric molecular weight of 51,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited an absorption maximum of reduced CO complex at 451 nm. On the basis of the specificity toward testosterone metabolism and the N-terminal amino acid sequence, P450APD was attributed to a member of P450 class IIC subfamily, which is identical or closely related to LM3b (D. R. Koop and M. J. Coon (1979) Biochem, Biophys, Res. Commun. 91, 1075-1081), form 3b (E. F. Johnson (1980) J. Biol. Chem. 255, 304-309), and other similar preparations. Antibody against the P450APD inhibited about 80% of the amphetamine deamination activity in rabbit hepatic microsomes as well as in the reconstitution system of this P450. The present results support that P450APD is the major P450 isozyme responsible for amphetamine deamination in rabbit liver.  相似文献   

17.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

18.
In intact rats, ethanol treatment has been associated with increases in hepatic levels of both P450IIB1/2 and P450IIE. When rat hepatocytes were cultured on an extracellular tumor matrix (Matrigel), exposure to ethanol from 48 to 96 h in culture resulted in increases in cytochromes P450IIE, IIB1/2, and IIIA. Cytochrome P450IIE was detected immunologically and enzymatically, using two activities associated with cytochrome P450IIE, p-nitrophenol hydroxylation, and acetaminophen activation to a metabolite that binds to glutathione. The content of cytochrome P450IIE in freshly isolated cells decreased when the cells were placed in culture. Exposure of the cultured hepatocytes to ethanol from 48 to 96 h after inoculation resulted in an increase in cytochrome P450IIE compared to untreated cultured cells. In addition, in culture, the amount of enzymatically active protein after ethanol treatment was equal to that in hepatocytes freshly isolated from intact animals. Ethanol treatment resulted in increases in cytochrome P450IIB1/2 compared to untreated cells, as shown immunologically and by increased benzyloxyresorufin dealkylase activity. However, phenobarbital induced cytochrome P450IIB1/2 to higher levels, compared to ethanol. Ethanol and phenobarbital treatments both increased P450IIIA, as determined immunologically and by the amount of propoxycoumarin depropylase activity that is inhibited by triacetyloleandomycin. However, the amount of P450IIIA increased after ethanol treatment was less than that increased after treatment with dexamethasone in these cells. The ethanol-mediated increases in all four forms of cytochrome P450 in culture suggest that these increases in the intact animal result from direct effects of ethanol on the liver.  相似文献   

19.
The molecular mechanism of cytochrome P450IIE reduction by CCl4 was reexamined by measuring its enzyme activity, immunoreactive protein contents, and mRNA levels. Aniline hydroxylase and the amounts of immunoreactive P450IIE were rapidly decreased in a time-dependent manner after a single dose of CCl4. No changes were observed in the amounts of immunoreactive P450IIC and P450IA despite significant decreases decrease in their catalytic activities. However, the decreases in P450IIE enzyme activity and immunoreactive protein by CCl4 were not accompanied by a decline in its mRNA level. The data thus suggested a post-translational reduction of P450IIE by CCl4, probably due to specific destruction of the P450IIE protein by its own substrate rather than heme moiety.  相似文献   

20.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号