首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pluripotent human embryonic stem cells (hESCs) have the distinguishing feature of innate capacity to allow indefinite self-renewal. This attribute continues until specific constraints or restrictions, such as DNA methylation, are imposed on the genome, usually accompanied by differentiation. With the aim of utilizing DNA methylation as a sign of early differentiation, we probed the genomic regions of hESCs, particularly focusing on stem cell marker (SCM) genes to identify regulatory sequences that display differentiation-sensitive alterations in DNA methylation. We show that the promoter regions of OCT4 and NANOG, but not SOX2, REX1 and FOXD3, undergo significant methylation during hESCs differentiation in which SCM genes are substantially repressed. Thus, following exposure to differentiation stimuli, OCT4 and NANOG gene loci are modified relatively rapidly by DNA methylation. Accordingly, we propose that the DNA methylation states of OCT4 and NANOG sequences may be utilized as barometers to determine the extent of hESC differentiation.  相似文献   

2.
3.
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.  相似文献   

4.
Human embryonic stem cells (hESCs) and their differentiated progeny allow for investigation of important changes/events during normal embryonic development. Currently most of the research is focused on proteinacous changes occurring as a result of differentiation of stem cells and little is known about changes in cell surface glycosylation patterns. Identification of cell lineage specific glycans can help in understanding their role in maintenance, proliferation and differentiation. Furthermore, these glycans can serve as markers for isolation of homogenous populations of cells. Using a panel of eight biotinylated lectins, the glycan expression of hESCs, hESCs-derived human neural progenitors (hNP) cells, and hESCs-derived mesenchymal progenitor (hMP) cells was investigated. Our goal was to identify glycans that are unique for hNP cells and use the corresponding lectins for cell isolation. Flow cytometry and immunocytochemistry were used to determine expression and localization of glycans, respectively, in each cell type. These results show that the glycan expression changes upon differentiation of hESCs and is different for neural and mesenchymal lineage. For example, binding of PHA-L lectin is low in hESCs (14±4.4%) but significantly higher in differentiated hNP cells (99±0.4%) and hMP cells (90±3%). Three lectins: VVA, DBA and LTL have low binding in hESCs and hMP cells, but significantly higher binding in hNP cells. Finally, VVA lectin binding was used to isolate hNP cells from a mixed population of hESCs, hNP cells and hMP cells. This is the first report that compares glycan expression across these human stem cell lineages and identifies significant differences. Also, this is the first study that uses VVA lectin for isolation for human neural progenitor cells.  相似文献   

5.
Currently, there are no differentiation strategies for human embryonic stem cells (hESCs) that efficiently produce one specific cell type, possibly because of lack of understanding of the genes that control signaling events prior to overt differentiation. sed HepG2 cell conditioned medium (MEDII), which induces early differentiation in mouse ES cells while retaining pluripotent markers, to query gene expression in hESCs. Treatment of adherent hESCs with 50% MEDII medium effected differentiation to a cell type with gene expression similar to primitive streak stage cells of mouse embryos. MEDII treatment up-regulates TDGF1 (Cripto), a gene essential for anterior-posterior axis and mesoderm formation in mouse embryos and a key component of the TGFB1/NODAL signaling pathway. LEFTYA, an antagonist of NODAL/TDGF1 signaling expressed in anterior visceral endoderm, is down-regulated with MEDII treatment, as is FST, an inhibitor of mesoderm induction via the related INHBE1 pathway. In summary, the TGFB1/NODAL pathway is important for primitive-streak and mesoderm formation and in using MEDII, we present a means for generating an in vitro cell population that maintains pluripotent gene expression (POU5F1, NANOG) and SSEA-4 markers while regulating genes in the TGFB1/NODAL pathway, which may lead to more uniform formation of mesoderm in vitro.  相似文献   

6.
7.
Graphene has drawn attention as a substrate for stem cell culture and has been reported to stimulate the differentiation of multipotent adult stem cells. Here, we report that graphene enhances the cardiomyogenic differentiation of human embryonic stem cells (hESCs) at least in part, due to nanoroughness of graphene. Large-area graphene on glass coverslips was prepared via the chemical vapor deposition method. The coating of the graphene with vitronectin (VN) was required to ensure high viability of the hESCs cultured on the graphene. hESCs were cultured on either VN-coated glass (glass group) or VN-coated graphene (graphene group) for 21 days. The cells were also cultured on glass coated with Matrigel (Matrigel group), which is a substrate used in conventional, directed cardiomyogenic differentiation systems. The culture of hESCs on graphene promoted the expression of genes involved in the stepwise differentiation into mesodermal and endodermal lineage cells and subsequently cardiomyogenic differentiation compared with the culture on glass or Matrigel. In addition, the culture on graphene enhanced the gene expression of cardiac-specific extracellular matrices. Culture on graphene may provide a new platform for the development of stem cell therapies for ischemic heart diseases by enhancing the cardiomyogenic differentiation of hESCs.  相似文献   

8.
9.
Human embryonic stem cells (hESCs) are to be considered as a valuable source for regenerative medicine because of their capacity to differentiate into all cell types. We have developed an efficient culture system to differentiate hECSs into endothelial cells without the formation of embryoid bodies Establishing appropriate culture conditions with a cocktail of growth factors allowed us to differentiate hESCs directly to endothelial primary culture with about 50% efficiency. CD31 immunomagnetic cell sorting was used to purify derived endothelium from the primary culture of hESCs. Isolated endothelial cells expressed immunological markers (vWF, CD105), specific genes (VE-cadherin, KDR, GATA-2, GATA-3, eNOS), and formed cord-like structures on collagen matrix and in Matrigel assay. During differentiation to endothelial lineage promoter regions of the genes involved in specific cell fate determination and homeostasis (GATA-2,-3, and eNOS) underwent intensive hypomethylation which correlated with the gene expression. Overall our data demonstrate that direct differentiation of hESCs leads to endothelial cells that acquire epigenetic patterning similar to the functional endothelial cells of the organism.  相似文献   

10.
Genetic studies in fish, amphibia, and mice have shown that deficiency of Nodal signaling blocks differentiation into mesoderm and endoderm. Thus, Nodal is considered as a major inducer of mesendoderm during gastrulation. On this basis, Nodal is a candidate for controlling differentiation of pluripotent human embryonic stem cells (hESCs) into tissue lineages with potential clinical value. We have investigated the effect of Nodal, both as a recombinant protein and as a constitutively expressed transgene, on differentiation of hESCs. When control hESCs were grown in chemically defined medium, their expression of markers of pluripotency progressively decreased, while expression of neuroectoderm markers was strongly upregulated, thus revealing a neuroectodermal default mechanism for differentiation in this system. hESCs cultured in recombinant Nodal, by contrast, showed prolonged expression of pluripotency marker genes and reduced induction of neuroectoderm markers. These Nodal effects were accentuated in hESCs expressing a Nodal transgene, with striking morphogenetic consequences. Nodal-expressing hESCs developing as embryoid bodies contained an outer layer of visceral endoderm-like cells surrounding an inner layer of epiblast-like cells, each layer having distinct gene expression patterns. Markers of neuroectoderm were not upregulated during development of Nodal-expressing embryoid bodies, nor was there induction of markers for definitive mesoderm or endoderm differentiation. Moreover, the inner layer expressed markers of pluripotency, characteristic of undifferentiated hESCs and of epiblast in mouse embryos. These results could be accounted for by an inhibitory effect of Nodal-induced visceral endoderm on pluripotent cell differentiation into mesoderm and endoderm, with a concomitant inhibition of neuroectoderm differentiation by Nodal itself. There could also be a direct effect of Nodal in the maintenance of pluripotency. In summary, analysis of the Nodal-expressing phenotype suggests a function for the transforming growth factor-beta (TGF-beta) growth factor superfamily in pluripotency and in early cell fate decisions leading to primary tissue layers during in vitro development of pluripotent human stem cells. The effects of Nodal on early differentiation illustrate how hESCs can augment mouse embryos as a model for analyzing mechanisms of early mammalian development.  相似文献   

11.
12.
Cheong HS  Lee HC  Park BL  Kim H  Jang MJ  Han YM  Kim SY  Kim YS  Shin HD 《BMB reports》2010,43(12):830-835
Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.  相似文献   

13.
To fully understand self-renewal and pluripotency and their regulation in human embryonic stem cells (hESCs), it is necessary to generate genetically modified cells and analyze the consequences of elevated and reduced expression of genes. Genes expressed in hESCs using plasmid vectors, however, are subject to silencing. Moreover, hESCs have a low plating efficiency when dissociated to single cells, making creation of subcloned lines inefficient. In addition to overexpression experiments, it is important to perform loss-of-function studies, which can be achieved rapidly using RNA interference (RNAi). We report stable long-term expression of enhanced green fluorescent protein (eGFP) in hESCs using a lentiviral vector, and establishment of an eGFP-expressing subline (RG6) using manual dissection. To demonstrate the efficacy of RNAi in hESCs, an RNAi expression vector was used to achieve reduced expression of eGFP in hESCs. To evaluate the role of OCT4 in the regulation of hESC self-renewal and differentiation, a vector expressing a hairpin RNA targeting endogenous expression of OCT4 was constructed. In a novel experiment in hESCs, the OCT4 cDNA sequence was cloned into an expression vector to allow for the transient upregulation of OCT4 in hESCs. The ability to manipulate levels of OCT4 above and below enodogenous levels allows the determination of OCT4 function in hESCs. Specifically, reduced expression of OCT4 in hESCs promoted upregulation of markers indicative of mesoderm and endoderm differentiation, and elevated levels of OCT4 in hESCs promoted upregulation of markers indicative of endoderm derivatives. Thus, both upregulation and downregulation of Oct4 in hESCs results in differentiation, but with patterns distinct from parallel experiments in mice.  相似文献   

14.
Genetic modifications of human embryonic stem cells (hESCs) that will efficiently promote stable homogenous gene silencing, and will also allow monitoring of the silencing level, may be invaluable for the study of function of genes in early human embryogenesis, differentiation, and maintenance of pluripotency of hESCs. RNA-mediated interference (RNAi) emerges as a highly efficient tool for specific knockdown of gene expression. Lentiviruses are efficient vectors for the delivery and stable expression of transgenes in hESCs. We sought to develop a lentiviral-RNAi-based system that will efficiently induce homogenous gene silencing and will allow the monitoring of its relative level in hESCs. Dual-promoter lentiviral vectors coexpressing an RNAi cassette and a reporter gene were initially used for efficient and stable induction of heterogeneous levels of gene silencing in polyclonal hESCs. This step was further combined with the isolation of transduced clones with different homogenous levels of gene silencing. The level of silencing in each of the clones correlated and could be monitored by the level of expression of the vector's reporter transgene. Thus, our system allows easy identification of clones with relatively different homogenous levels of gene silencing. Our approach would be valuable for the study of function of genes, in particular those whose role in hESCs biology depends on their level of expression.  相似文献   

15.
16.
Smooth muscle cell (SMC) plays critical roles in many human diseases, an in vitro system that recapitulates human SMC differentiation would be invaluable for exploring molecular mechanisms leading to the human diseases. We report a directed and highly efficient SMC differentiation system by treating the monolayer-cultivated human embryonic stem cells (hESCs) with all-trans retinoid acid (atRA). When the hESCs were cultivated in differentiation medium containing 10microM RA, more than 93% of the cells expressed SMC-marker genes along with the steadily accumulation of such SMC-specific proteins as SM alpha-actin and SM-MHC. The fully differentiated SMCs were stable in phenotype and capable of contraction. This inducible and highly efficient in vitro human SMC system could be an important resource to study the mechanisms of SMC phenotype determination in human.  相似文献   

17.
18.
The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study,using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover,loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs,suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.  相似文献   

19.
Human embryonic stem cells (hESCs) have the potential to differentiate into various cell types, and the three germ layers in vivo and in vitro. They are therefore useful in transplantation and tissue engineering. Here, we describe the expression patterns of selected steroid receptor mRNAs - estrogen receptor-alpha (ER-alpha), ER-beta, glucocorticoid receptor (GR), and progesterone receptor (PR) - in undifferentiated hESCs and embryoid bodies (EBs) cultured for 2, 4, and 6 d, as assessed by real-time PCR, in order to define the possible influence of steroid hormones on the differentiation of hESCs. These receptor mRNAs were expressed in undifferentiated hESCs and EBs. The expression of PR mRNA only decreased during the differentiation of EBs but not of hESCs. Immunohistochemical analysis gave strong staining of ER-alpha, ER-beta, and GR proteins in the nuclei of hESCs and EBs, whereas PR was not detected. We also examined the potential of these steroid hormones to direct the differentiation of hESCs in vitro. The expression of 11 cell-specific markers representing 3 germ layers and 5 tissue types was used to assess the differentiation of hESCs. We found that certain endodermal marker genes were either only expressed in the estrogen-treated group or their expression was stimulated in that group, suggesting that steroid hormones can control the differentiation of hESCs into various cell types.  相似文献   

20.
Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号