首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   

2.
Abstract— Phenylethanolamine and octopamine have been detected in the developing rat brain. Maximum concentration of these amines occurs early in development (16-17 days of gestation). At this developmental stage, the brain concentration of these amines is higher than that of norepinephrine. There is a sharp decline in the phenylethanolamine and octopamine concentrations on day 18 of gestation to approximately those of the adult. This decrease coincides with an increase in-monoamine oxidase activity of fetal brain, with an increase in the activities of tyrosine hydroxylase and dopamine-β-hydroxylase, and with the appearance of a saturable active uptake mechanism for norepinephrine. The administration of iproniazid, a monoamine oxidase inhibitor, to pregnant rats produced an increase in phenylethanolamine, octopamine and norepinephrine concentrations in the fetal rat brain at 16 days of gestation. p -Chlorophenylalanine, an inhibitor of phenylalanine hydroxylase, decreased fetal brain norepinephrine; this drug increased brain levels of phenylethanolamine and octopamine. The combined administration of iproniazid, p -chlorophenylalanine and phenylalanine to pregnant rats resulted in increased concentrations of octopamine and in a several-fold increase of phenylethanolamine levels; norepinephrine concentrations were sharply reduced. The possible significance of these findings in relation to pathological conditions such as phenylketonuria is discussed.  相似文献   

3.
The hydroxylated phenylethylamines p-tyramine, m-tyramine, octopamine, metaraminol and norepinephrine were accumulated by homogenates of rat brain much more vigorously than β-phenethylamine or amphetamine. The affinity concentrations (Km) for initial (5-min) uptake by homogenates of whole brain were 0.5, 3 and 6 μM for DL-norepine-phrine, p-tyramine and DL-octopamine, respectively. The uptake of these three hydroxylated compounds was much more vigorous in striatal tissue than in cortical tissue, and in both tissues the rate of uptake decreased in the sequence: norepinephrine > tyramine > octopamine. The uptake of these three substances was inhibited by reduced temperature, by lack of glucose, by CN- and DNP, and by desmethylimipramine, cocaine and ouabain. The uptake of norepinephrine and octopamine appeared to require Na+. Pretreatment of rats with reserpine or 6-hydroxydopamine decreased the ability of brain to take up norepinephrine or octopamine. Previously accumulated labelled phenylethylamines migrated in sucrose density gradients with a peak of radioactivity corresponding to an equilibrium position of catecholamine-containing nerve endings. The magnitude of the retention of [3H]amine in this synaptosornal peak decreased in the order: norepinephrine > octopamine > tyramine. The accumulated amines were released by sonic, osmotic and thermal stresses which disrupt neuronal membranes. The presence of a β-hydroxyl group appeared to protect amines from destruction by monoamine oxidase, presumably by virtue of uptake in presynaptic storage vesicles. During superfusion, tyramine and metaraminol appeared to displace [3H]norepinephrine from binding sites in brain slices.  相似文献   

4.
DOPAMINE-β-HYDROXYLASE IN THE RAT BRAIN: DEVELOPMENTAL CHARACTERISTICS   总被引:12,自引:7,他引:5  
Abstract— A sensitive and specific assay for dopamine-8-hydroxylase (DBH) in the rat brain has been developed. The enzyme in the brain has requirements for cofactors and affinity for substrate similar to DBH in the adrenal medulla. DBH activity was demonstrable in the brain of the fetal rat at 15 days of gestation; there was an increase in DBH activity with maturation that preceded and paralleled the rise in levels of endogenous norepinephrine until 3 weeks after birth. There was a shift in the distribution of total DBH activity from the caudal to the rostral regions of the brain during development. In the adult brain, DBH was highly localized in the nerve terminals. Between 17 days of gestation and adult-hood, there was 2300-fold increase in the DBH activity that sedimented with sheared-off nerve terminals.  相似文献   

5.
Abstract— High concentrations of dopamine were found in the nucleus accumbens and olfactory tubercle of the rat brain using a radiochemical enzymatic assay technique. An active uptake system for [3H]dopamine that is temperature sensitive and dependent on external sodium ions is present in synaptosome-rich homogenates of these two brain areas. This uptake process is potently inhibited by benztropine (IC50= 2.0 × 10-7m ). Dextroamphetamine d was 4.5 times more potent than 1-amphetamine in inhibiting dopamine uptake in the nucleus accumbens and six times more potent in the olfactory tubercle and corpus striatum. Low concentrations of dopamine caused an increase in adenosine 3′5′-monophosphate (cyclic AMP) formation in homogenates of both the nucleus accembens and olfactory tubercle. This effect was potently blocked by chlorpromazine. The α-adrenoceptor antagonist phentolamine weakly antagonized the stimulation of this adenylate cyclase by dopamine, but the β-adrenoceptor antagonist propranolol did not.  相似文献   

6.
The Na+ and energy dependent uptake of norepinephrine into cortical rat brain homogenates or purified nerve ending particles (NEP) is reduced by prior trypsin treatment. In contrast, the uptake of dopamine, serotonin, choline and γ-aminobutyric acid is markedly less sensitive to the effect of trypsin. Kinetic analyses indicate that the trypsin-induced decrease of norepinephrine uptake is non-competitive. In the dose range studied, trypsin did not appreciably alter the protein content or morphology of NEP. However, in a dose related fashion, trypsin decreased the glycoprotein content of NEP measured as the loss of protein bound N-acetylneuraminic acid.  相似文献   

7.
A fraction containing synaptic vesicles was isolated from rat heart by differential centrifugation, and the uptake of l-[3H]norepinephrine was studied in vitro., Uptake was highly dependent upon time and temperature, and was linear for 6 min at 30° or 4 min at 37°C. About 80% of the measured uptake required both ATP and Mg2+ and was inhibited by nanomolar concentrations of reserpine; no inhibition was obtained with cocaine. These properties are characteristic of storage vesicle uptake as opposed to synaptic membrane uptake. Uptake of norepinephrine was saturable and displayed a single Km value of 2 μM. The uptake was completely stereospecific, as unlabeled dl-norepinephrine was less than half as effective as unlabeled l-norepinephrine in reducing uptake of l-[3H]norepinephrine. Norepinephrine uptake could be inhibited by various phenethylamines and indoleamines following the rank order: reserpine > harmaline > 5-hydroxytryptamine > dopamine > norepinephrine. The vesicle preparation also incorporated [3H]5-hydroxytryptamine and [3H]dopamine. 5-Hydroxytryptamine uptake displayed a Km of 0.5 μM and a maximal uptake equivalent to that seen with norepineph-rine; dopamine uptake followed complex kinetics. Administration of reserpine in vivo or destruction of sympathetic neurons by long-term guanethidine treatment both eliminated the ability of the preparation to take up norepinephrine. Synaptic vesicles of cardiac sympathetic neurons thus resemble vesicles prepared from other central and peripheral catecholaminergic tissues; this method may be used readily to examine drug effects on rat heart synaptic vesicle function.  相似文献   

8.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

9.
Abstract— The activity of cyclic AMP phosphodiesterase of rat cerebral homogenates increased several-fold between 1 and 60 days of age. Enzyme activity in the cerebellum, on the other hand, did not increase during this period. A kinetic analysis of the phosphodiesterase activity revealed evidence for multiple forms of the enzyme and indicated that the postnatal increase in phosphodiesterase activity of rat cerebrum was due almost exclusively to the high Km enzyme. In cerebellum, the ratio of the high and low Km enzyme remained fairly constant during ontogenetic development. Physical separation of the phosphodiesterases contained in 100,000 g soluble supernatant fractions of sonicated brain homogenates by polyacrylamide disc gel electrophoresis confirmed the presence of multiple enzyme forms. In adult rats we found six distinct peaks of phosphodiesterase activity (designated I to VI according to the order in which they were eluted from the column) in cerebellum and 4 forms of the enzyme (Peaks I through IV) in cerebrum. Brains of newborn rats had a different pattern and ratio of phosphodiesterase activities. For example, Peak I phosphodiesterase was undetectable in cerebrum or cerebellum of newborn rats. Moreover, in the cerebellum of newborn rats Peak II was the dominant peak whereas in the cerebellum of adult rats Peak III was the largest peak. A comparison of the multiple forms of phosphodiesterase from the cerebrum of newborn and adult animals suggested that the postnatal increase in phosphodiesterase activity previously seen in crude homogenates was due largely to an increase in a high K, Peak II phosphodiesterase. The ratios of activities of the other peaks and their sensitivities to an activator of phosphodiesterase were similar in newborn and adult rats. An endogenous heat-stable activator of phosphodiesterase was found in cerebrum, cerebellum and brain stem. In newborn rats, the cerebellum contained several-fold less activity of this activator than did cerebrum or brain stem. However, the activity of this activator increased with age in the cerebellum and would appear to have decreased postnatally in cerebrum and brain stem. These results suggest that some multiple forms of phosphodiesterase can develop independently and that changes in activities of these phosphodiesterases may occur by increases in the quantity of enzyme or by changes in the quantity of an endogenous activator of phosphodiesterase.  相似文献   

10.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

11.
—The blood-brain barrier transport of amino acids has been measured using the carotid injection technique in the rat. The synthetic amino acids, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) and α-(methylamino)isobutyric acid (MeAIB), were model substrates in the Ehrlich cell for the leucine (L) and alanine (A) neutral amino acid transport mechanisms, respectively. The uptake (±)b-[carboxyl-14C]BCH at the same rate for the five brain regions tested suggested a similarity between regions for the L transport mechanism. At injectant concentrations of 0·1 mm (similar to naturally occurring aromatic neutral amino acids), BCH was mainly taken up by a saturable mediated transport mechanism (K1, 0·16 mm and Vmax, 0·03/μmol/g per min). At higher concentrations, uptake by a nonsaturable or diffusional mechanism could be demonstrated. When BCH was added as a second amino acid to l -[3-14C]DOPA, the saturable component of l -DOPA transport was significantly inhibited. MeAIB had no measurable effect on the rate of l -DOPA transport. These results suggested that the mediated transport mechanism for l -DOPA at the cerebral capillaries is similar to the l -neutral amino acid transport system.  相似文献   

12.
Amino acid transport was studied in three neuroblastoma clones, N-TD6, which synthesizes norepinephrine, N-T16, which synthesizes small amounts of serotonin, and N-S20Y, which synthesizes acetylcholine. All three clones exhibited high-affinity saturable transport systems for tyrosine, phenylalanine, tryptophan and glycine as well as systems unsaturated at amino acid concentrations of 1 mM in the external medium. Tyrosine, phenylalanine and tryptophan enter all three clones by rapidly exchanging transport systems which appear to be relatively insensitive to lowered external [Na+] or to the presence of 2,4-dinitrophenol (DNP). Glycine uptake was slower and was much more sensitive to lowered external [Na+] and to the presence of DNP in the medium. Glycine transport in N-T16 cells was decreased more markedly at low temperature than was transport of the three aromatic amino acids. Km and Vmax values found for saturable transport of tyrosine, phenylalanine and tryptophan were sufficiently low to suggest that, if similar amino acid transport systems exist in neuronal membranes, and if amino acid levels in brain extracellular fluid are similar to levels in plasma, such systems may serve, in conjunction with transport systems in cerebral capillaries, to limit the entry of amino acids into brain cells when blood amino levels are near the normal physiological range.  相似文献   

13.
—The incorporation of an orally administered mixture of [9,10-3H2joleic acid and [1-14C]linoleic acid into the brain and spinal cord lipids was maximal after 24 h compared with 4 h for extraneural tissue. In the latter, both acids were utilized equally well for triglyceride biosynthesis, but linoleate entered phosphatidylcholine more rapidly than oleate. Oleic acid was preferentially incorporated into newly synthesized cholesterol esters although 4 h after dosing most cholesterol esters present in serum were formed preferentially from linoleate presumably by the action of lecithin-cholesterol acyl transferase. In neural tissue, a considerable amount of [1-14C]linoleate was metabolized to higher polyunsaturated fatty acids, whereas in the case of oleate, 90 per cent of the tritium activity remained in monoenic acids at all time periods studied. Both acids were initially incorporated most rapidly into the lecithin fraction of brain and spinal cord, but after 7 days diacyl phosphatidylethanolamine had the highest specific activity. These data are consistent with the view that the uptake of labelled fatty acids by the brain takes place principally as free acids but that some uptake of esterified forms, probably largely as phosphatidylcholine, also occurs. The low linoleate content of the brain and probably also of cerebrospinal fluid cannot be explained on the basis of a selective restriction on the uptake of this lipid from plasma.  相似文献   

14.
Abstract—
  • 1 Upon incubation, slices of brain tissue took up fluid; the degree of swelling increased with increasing age. No sweiling occurred in slices from foetal brain. Since this swelling was associated with increases in the inulin space, the percentage of inulin space in slices at the end of incubation increased during brain development.
  • 2 Most of the capacity for ion transport seemed to be absent from foetal brain. In vivo and in slices, Na+ was very high and K+ was very low in comparison to levels at other ages. There was a rapid change around birth, but no significant change at later ages. Upon incubation, Na+ levels increased in other slices, but not in slices of foetal brain.
  • 3 Upon incubation of the slices, ATP levels were restored to levels close to those in the living brain; there were no significant alterations in available energy during development to explain changes in amino acid transport.
  • 4 The composition of the free pool of cerebral amino acids in vivo changed with development, with some compounds (glutamic acid and related compounds) increasing, others (mostly‘essential’amino acids) decreasing, with age. These changes were not linear with time, and the level of a compound might exhibit several peaks during development.
  • 5 The uptake (influx) of taurine, glutamate and glycine into brain slices increased rapidly during the foetal and early neonatal periods, reached a maximum between 2 and 3 weeks of postnatal age and then declined to adult levels. The levels of steady-state uptake with glycine also exhibited a maximal peak at 2-3 weeks of postnatal age. Steady-state uptake of taurine and glutamate reached adult levels by about 3 weeks of age.
  • 6 The pattern of inhibition of amino acid transport by two specific amino acid analogues changed during development for some amino acids (GABA, glycine and glutamate), indicating an alteration in substrate specificity.
  • 7 The results demonstrate complex changes in cerebral amino acid transport during development, with several maxima or minima and with changes in specificity for at least some compounds.
  相似文献   

15.
—The influence of 1-norepinephrine on the accumulation of [14C]choline by nuclei-free homogenates and synaptosomes of guinea-pig brain was studied. Kinetic analysis of choline accumulation by guinea-pig brain resulted in both high and low affinity Michaelis constants. Norepinephrine stimulated the high affinity choline transport process but not the low and the magnitude of its stimulation in 3 different brain regions was correlated with the choline acetyltransferase activity of those regions. Depletion of norepinephrine from the brainstem by pretreatment with the catecholamine depleter alpha-methyl-para-tyrosine significantly decreased the maximal velocity of choline transport. Both the alpha adrenergic receptor blocker phentolamine and the beta adrenergic receptor blocker propranalol inhibited norepinephrine induced stimulation of choline transport. Cocaine stimulated choline transport at low concentrations and pretreatment of animals with reserpine significantly antagonized cocaine's stimulation of choline transport. The results suggest that endogenous norepinephrine may modify the high affinity choline transport process in guinea-pig brain.  相似文献   

16.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

17.
[14C]5,6-Dihydroxytryptamine ([14C] 5,6-DHT) and [14C]5,7-dihydroxytryptamine ([14C]5,7-DHT) were deaminated to toluene-isoamylalcohol extractable products when incubated with homogenates of rat hypothalamus or pons-medulla oblongata. [14C]5,6-Dihydroxyindole acetic acid ([14C]5.6-DHIAA) and [14C]5,7-dihydroxyindole acetic acid ([14C]5,7-DHIAA) were detected as MAO metabolites by TLC besides non-identified components. The conversion of [14C]5,6-DHT and [14C]5,7-DHT obeyed, at least initially, Michaelis-Menten kinetics (Km 5,7-DHT: 0.5 × 10?3M; Km 5,6-DHT: 1.25 × 10?3M). Inhibition of the reaction by the MAO A inhibitor, clorgyline, resulted in a typical double sigmoidal inhibition curve indicating that both amines are metabolized by both types of MAO (A and B). In deprenyl inhibition studies, however, 5,7- and 5,6-DHT seemed to be preferred substrates of MAO A. Incubation of rat brain homogenates with [14C]5,6-DHT and [14C]5,7-DHT or with the MAO metabolites [14C]5,6-DHIAA and [14C]5,7-DHIAA caused a time-dependent break-down of the dihydroxylated indole compounds with subsequent binding of radioactivity to perchloric acid insoluble tissue components. 5,6-DHT inactivated MAO in rat brain homogenates parallel to its decomposition and extensive protein binding. The inactivation of MAO by 5,6-DHT and the extensive binding of radioactivity to protein were antagonized by dithiothreitol (DTT), glutathione (GSH) and L-ascorbic acid. Reduction of [O2] in the incubation medium slightly attenuated the inactivation of MAO by 5,6-DHT. Catalase or superoxide dismutase failed to prevent MAO from being inactivated by 5,6-DHT. The results suggest that oxidation products of 5,6-DHT, e.g. its corresponding o-quinone, are involved in the inactivation of MAO in vitro and mainly responsible for the binding of radioactivity to brain proteins in vitro. Similar mechanisms may also be operative in the in vivo neurotoxicity of 5,6-DHT. The lack of inactivation of MAO by 5,7-DHT in vitro correlated with a low degree of radioactivity binding (from [14C]5,7-DHT) to homogenate protein pellets; the binding to proteins was barely influenced by GSH, cysteine, DTT and l -ascorbic acid. These latter findings do not provide a plausible explanation for the mechanism(s) involved in the well known in vivo neurotoxicity of 5,7-DHT.  相似文献   

18.
Kinetic analysis of 3H-serotonin accumulation by crude synaptosomal suspensions of neocortex, hippocampus and caudate or by whole homogenates of cerebellum revealed the presence of a high affinity uptake component having an apparent Km for serotonin which ranged from 2.8 to 6.0 × 10?8 M. A second, low affinity, uptake component with an apparent Km of 7 × 10?6 M was present in caudate. A comparable low affinity uptake component for serotonin was not observed in neocortex, hippocampus or cerebellum. Lesions in the medial forebrain bundle produced significant decreases in serotonin comtent of neocortes, hippocampus and caudate (66 to 75%) and a significant increase in serotonin content of cerebellum (25%). The lesions did not affect the apparent Km of the high affinity uptake system but did produce change in Vmax which paralleled the changes in content of serotonin. The lesions also produced decreases in dopamine and norepinephrine content of caudate and a comparable decrease in the Vmax of the low affinity uptake system with no change in the apparent Km. There was a correlation of 0.97 between the endogenous content of serotonin and the Vmax of the high affinity uptake system. These results support the view that the high and low affinity components of serotonin uptake represent accumulation into serotonergic and catecholaminergic neurons, respectively.  相似文献   

19.
Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron.  相似文献   

20.
Abstract— The utilization of [3H]norepinephrine newly taken up or newly synthesized from [3H]tyrosine was studied in the brain stem of normal and stressed rats up to 5 h after the intracistemal injection of [3H]norepinephrine or [3H]tyrosine. The biphasic disappearance of the exogenous as well as of the endogenously synthesized [3HJnorepinephrine revealed that the amine is localized in at least two main compartments (A and B). The half-life of the amine newly taken up or newly synthesized, mainly localized in compartment A, is of short duration (between 15 and 30 min); the amine stored for a longer period of time and mainly distributed in compartment B is utilized more slowly (half-life, 180 to 260 min). A stress of short duration (15 min) induced by electric shocks applied to the feet increased the utilization of [3HJnorepinephrine newly taken up or newly synthesized from [3H]dopamine or [3H]tyrosine, but has no effect on the [3H]norepinephrine stored for a longer time period, indicating that the amine in compartment A is released in preference to that stored in compartment B. A stress of longer duration (180 min) increased the utilization of [3H] norepinephrine in both compartments and induced a sustained increased in norepinephrine synthesis as shown by the enhanced formation of [3H]norepinephrine from [3H]tyrosine in brain stem slices in vitro. The electrical stress was without effect on [3H]norepinephrine uptake. As for [3H]norepinephrine, the 15 min of stress enhanced the utilization of [3H] dopamine newly taken up or newly synthesized from [3H]tyrosine and had no effect on [3H]dopamine stored for a longer time period. These results suggest an increased release of both [3H]dopamine and [3H]norepinephrine from noradrenergic terminals of the rat brain stem. Finally, the 15 min of stress appeared to have no effect on the utilization of [3H] serotonin newly synthesized from [3H]tryptophan in serotonergic neurons of the brain stem, whereas the 180 min of stress increased the utilization of 5-HT in this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号