共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes in the permeability of the cell membrane in cultured Chinese hamster ovary cells at different stages of the cell cycle were investigated. These were followed by measuring the intracellular retention of fluorescein molecules produced by the enzymatic hydrolysis of fluoresceindiacetate in the cytoplasm of CHO cells. Rate constants for the permeation of fluorescein have been calculated. 相似文献
2.
The protein synthesis patterns at various stages of the cell cycle of Chinese hamster ovary cells were examined by labelling cells with [35S]methionine and then separating the proteins by isoelectric focussing and two-dimensional, nonequilibrium pH gradient gel electrophoresis. We have observed a number of proteins which display quantitative differences in synthesis at specific cell cycle stages and of these the alpha- and beta-tubulins have been identified. A few proteins appear to be uniquely synthesized at specific times during the cell cycle. These include the histones and a modified version of them, which are synthesized only in S phase, and a pair of 21 kilodalton (kDa), pI 5.5 proteins, which appear only in late G2 and mitosis. We have also identified a 58-kDa, pI 7.5 protein which is present at all cell cycle stages except during late G2. This protein appears to have the same temporal properties as a 57-kDa protein called "cyclin" originally described in sea urchin embryos. 相似文献
3.
Changes in protein phosphorylation during the cell cycle of Chinese hamster ovary cells 总被引:10,自引:0,他引:10
The phosphorylation patterns of proteins were examined during the cell cycle of Chinese hamster ovary cells. This was accomplished by labeling synchronized cells at various times with [32P]orthophosphate and separating the proteins by both isoelectric focusing and nonequilibrium pH gradient two-dimensional gel electrophoresis. The most dramatic changes occurred during late G2/M when approximately eight proteins (including vimentin, lamin B, and histones 1 and 3) showed increased phosphorylation. Ten other proteins appeared to be uniquely phosphorylated during late G2/M. Of these 10 proteins, seven were no longer phosphorylated shortly after mitosis. There is also at least one protein which showed a relative decrease in phosphorylation during late G2/M. 相似文献
4.
Cell cycle dependent activities of DNA polymerases alpha and delta in Chinese hamster ovary cells 总被引:4,自引:0,他引:4
The activities of DNA polymerases alpha and delta, in extracts from Chinese hamster ovary (CHO) cells, were assayed in order to determine whether these polymerases are regulated during the cell cycle. An exponential population of CHO cells was separated into enriched populations of G-1, S, and G-2/M phases of cell cycle by centrifugal elutriation. Total cell homogenates from each population were assayed for DNA polymerase activity by measuring labeled nucleotide incorporation into the exogenous templates oligo(dT).poly(dA) and DNase I activated calf thymus DNA. In these experiments, specific DNA polymerase inhibitors were added to assays of the cellular extracts to allow for the independent measurement of activities of DNA polymerases alpha and delta. Comparisons of total DNA polymerase activity from cellular extracts, sampled from each portion of the cell cycle, demonstrated no significant change with respect to the concentration of total protein. However, results indicate that the activity of DNA polymerase delta increases with respect to that of DNA polymerase alpha in the G-2/M portion of the cell cycle. This difference in relative activities of DNA polymerases alpha and delta suggests a coordinate regulation of a specific species of DNA polymerase during the cell cycle. 相似文献
5.
6.
A Chinese Hamster Ovary cell line, CHO1-15500, producing recombinant human tissue type plasminogen activator (tPA) via the dihydrofolate reductase (DHFR) amplification system, was studied in batch culture. In this system both DHFR and tPA are under the control of the strong constitutive viral SV40 early promoter. Employing the cumulative viable cell-hour approach, the specific productivity of tPA had maxima in the lag (0.065 pg cell−1 h−1) and early decline (0.040 pg cell−1 h−1) population growth phases. The viable population was assigned into four subpopulations (G1, S, G2/M phase, and Apoptotic cells) using flow cytometric analysis. As expected, intracellular DHFR was maximally expressed during the S cell cycle phase. The production of tPA, however, was found to be a direct linear function of the G1 phase, with a subpopulation specific productivity of 0.080 pg c-h−1. Productivity maxima in the lag and early decline corroborate the flow cytometric data, indicative that this recombinant tPA production occurs primarily in the G1 cell cycle phase, not the S phase. This suggests that endogenous regulatory mechanisms are important controlling influences on the production of recombinant tPA in this ovarian cell line. Productivity from recombinant cell lines cannot be inferred from either the plasmid construct or the host cell alone. Elucidation of the relationship between expression of recombinant protein and the cell cycle phases of the host cell is a major component of the characterization of the animal cell production system. This information facilitates rational process design, including operating mode, modelling and control, and medium formulation. 相似文献
7.
Xiaofeng Cui Delphine Dean Zaverio M. Ruggeri Thomas Boland 《Biotechnology and bioengineering》2010,106(6):963-969
Thermal inkjet printing technology has been applied successfully to cell printing. However, there are concerns that printing process may cause cell damages or death. We conducted a comprehensive study of thermal inkjet printed Chinese hamster ovary (CHO) cells by evaluating cell viability and apoptosis, and possible cell membrane damages. Additionally, we studied the cell concentration of bio‐ink and found optimum printing of concentrations around 8 million cells per mL. Printed cell viability was 89% and only 3.5% apoptotic cells were observed after printing. Transient pores were developed in the cell membrane of printed cells. Cells were able to repair these pores within 2 h after printing. Green fluorescent protein (GFP) DNA plasmids were delivered to CHO‐S cells by co‐printing. The transfection efficiency is above 30%. We conclude that thermal inkjet printing technology can be used for precise cell seeding with minor effects and damages to the printed mammalian cells. The printing process causes transient pores in cell membranes, a process which has promising applications for gene and macroparticles delivery to induce the biocompatibility or growth of engineered tissues. Biotechnol. Bioeng. 2010;106: 963–969. © 2010 Wiley Periodicals, Inc. 相似文献
8.
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest. 相似文献
9.
The addition of oligosaccharide to asparagine residues of soluble and membrane-associated proteins in eukaryotic cells involves a polyisoprenoid lipid carrier, dolichol. In Chinese hamster ovary cells, the major isomer of this polyisoprenol has 19 isoprenyl units, the terminal one being saturated. Our laboratory has developed a procedure to analyze the levels and nature of the cell's dolichyl derivatives. Chinese hamster ovary cells contain predominately activated, anionic dolichol derivatives, such as oligosaccharyl pyrophosphoryldolichol, monoglycosylated phosphoryldolichols, and dolichyl phosphate. Our studies show that in growing cells there is continual synthesis of total dolichol. Also, preliminary data suggest there is no catabolism or secretion of this lipid. The level of dolichyl phosphate did not change significantly under a variety of conditions where the levels of enzyme activities utilizing dolichyl phosphate did change. These results suggested that these enzymes had access to the same pool of dolichyl phosphate and had similar Km values for this lipid. 相似文献
10.
Centriole distribution during tripolar mitosis in Chinese hamster ovary cells 总被引:7,自引:10,他引:7
下载免费PDF全文
![点击此处可从《The Journal of cell biology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole. 相似文献
11.
Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells 总被引:12,自引:12,他引:12
下载免费PDF全文
![点击此处可从《The Journal of cell biology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Monoclonal antibodies were raised against isolated spindles of CHO (Chinese hamster ovary) cells to probe for molecular components specific to the mitotic apparatus. One of the antibodies, CHO1, recognized an antigen localized to the midbody during mitosis. Immunofluorescence staining of metaphase cells showed that although the total spindle area was labeled faintly, the antigen corresponding to CHO1 was preferentially localized in the equatorial region of the spindle. With the progression of mitosis, the antigen was further organized into discrete short lines along the spindle axis, and eventually condensed into a bright fluorescent dot at the midzone of the intercellular bridge between two daughter cells. Parallel immunostaining of tubulin showed that the CHO1-stained area corresponded to the dark region where microtubules are entrapped by the amorphous dense matrix components and possibly blocked from binding to tubulin antibody. Immunoblot analysis indicated that CHO1 recognized two polypeptides of mol wt 95,000 and 105,000. The immunoreaction was always stronger in preparations of isolated midbodies than in mitotic spindle fractions. The protein doublet was retained in the particulate matrix fraction after Sarkosyl extraction (Mullins, J. M., and J. R. McIntosh. 1982. J. Cell Biol. 94:654-661), suggesting that CHO1 antigen is indeed a component of the dense matrix. In addition to the equatorial region of spindles and midbodies, CHO1 also stained interphase centrosomes, and nuclei in a speckled pattern that was cell cycle-dependent. Thus, the midbody appears to share either common molecular component(s) or a similar epitope with interphase centrosomes and nuclei. 相似文献
12.
Gene amplification in a single cell cycle in Chinese hamster ovary cells 总被引:46,自引:0,他引:46
We have employed Chinese hamster ovary cells synchronized by mitotic selection to study the replication and amplification of the dihydrofolate reductase gene. Using bromodeoxyuridine to differentially label newly replicated DNA, we show that the dihydrofolate reductase gene is replicated during the first 2 h of S phase, a time when, at most, 10% of the total genome has been replicated. We find that a 6-h inhibition of DNA synthesis by hydroxyurea beginning 2 h after the initiation of S phase markedly increases the frequency with which cells become resistant to a 100-fold increment in methotrexate. When DNA synthesis resumes following removal of the hydroxyurea, virtually all of the DNA replicated prior to inhibition, including the dihydrofolate reductase gene, is rereplicated. Analysis of the dihydrofolate reductase enzyme content of cells 24 h after treatment with hydroxyurea using the fluorescence-activated cell sorter reveals a subset of cells with elevated dihydrofolate reductase. It is this subset that contains additional copies of the dihydrofolate reductase gene and from which emerge highly methotrexate-resistant cells. We propose that the initial event of amplification is the rereplication of a variable, but relatively large, amount of the genome. As cells are subsequently placed under selection, a number of processes, including recombination events and loss of nonselected DNA sequences occur, resulting in what appears as differential gene amplification. 相似文献
13.
Purified membranes from surface-labelled phytohemagglutinin-resistant (PhaR) and wild-type chinese hamster ovary cells have been analysed by sodium dodecyl sulphate gel electrophoresis. Gel patterns were compared for cells labelled via galactose oxidase and B3H4 or lactoperoxidase and radioactive iodide. The results suggest that PhaR cells are altered in the carbohydrate portion of a number of their membrane glycoproteins. 相似文献
14.
We have selected Chinese hamster ovary (CHO) cells resistant to infection by encephalomycarditis (EMC) virus. Thus far, we have obtained five lines resistant to EMC, all of which manifest different phenotypes. Three of the five are not persistently infected with virus, while two lines produce infectious virus and grow in its presence. The nonpersistently infected lines exhibit different resistance profiles to the other viruses we have tested, and they are stable in nonselective growth conditions. Their resistance appears to be due to a genetic alteration in the cell. 相似文献
15.
Internalization of ricin into Chinese hamster ovary cells has been investigated. Combined treatment with galactose and pronase at 0 degrees C resulted in a complete release of surface-bound [125I]ricin into the media. Galactose-pronase-resistant cell-bound [125I]ricin represents internalized ricin molecules inside the cells. The internalization process is time, temperature, and concentration dependent. The pH optimum of internalization of ricin is about pH 7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has revealed that intact ricin molecules are internalized. Neither reduction nor proteolytic processing of ricin is required for the entry of ricin into Chinese hamster ovary cells. 相似文献
16.
Squalene synthase (farnesyldiphosphate:farnesyldiphosphate farnesyltransferase, EC 2.5.1.21) converts farnesyl pyrophosphate to squalene, the first metabolic step committed solely to the biosynthesis of sterols. Using a fluorescence-activated cell sorting technique designed to screen for cells defective in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, we isolated a squalene synthase-deficient mutant of Chinese hamster ovary cells. The mutant cell line, designated SSD, exhibits less than 7% of the squalene synthase activity of the parental cell line, CHO-HMGal. Both the SSD and the parental cells stably express HMGal, a model protein for studying the regulated degradation of HMG-CoA reductase, which consists of the membrane domain of HMG-CoA reductase fused to bacterial beta-galactosidase (Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). In this study, the regulatory effects of mevalonate and compactin on the activity levels of HMGal are substantially reduced in SSD cells as compared to the parental cell line. In lipid-poor medium, SSD cell growth is arrested. The rate of [3H]acetate incorporation into cholesterol for the mutant SSD cells is less than 2% of the rate for the parental cells. However, the incorporation of [3H] squalene into sterols is essentially wild type for SSD cells. When the mutant SSD cells are fed [3H]acetate, radioactivity accumulates in farnesol, much of which is secreted into the medium. By growing SSD cells in lipid-poor medium, a revertant cell type, designated SSR, was isolated. In every assay performed the revertant SSR cells exhibited a phenotype that was essentially wild type, demonstrating that the SSD mutant phenotype was the result of a single mutation. 相似文献
17.
Cell killing by various monofunctional alkylating agents in Chinese hamster ovary cells 总被引:2,自引:0,他引:2
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered. 相似文献
18.
Chinese hamster ovary (CHO) cells infected with adenovirus type 2 (Ad2) produced amounts of viral deoxyribonucleic acid (DNA) equal to that synthesized in permissively infected HeLa cells. However, there was 6,000-fold less virion produced in CHO cells. Since the structural viral polypeptides were not detected by pulse-labeling CHO cells at various times postinfection, the block in virion formation is located between the synthesis of viral DNA and late proteins. Extracts of CHO cells could also function in a recently reported in vitro Ad2 DNA synthesis system which is dependent upon the addition of exogenous Ad2 DNA covalently linked to a 5'-terminal protein (Ikeda et al., Proc. Natl. Acad. Sci. U.S.A. 77:5827-5831, 1980). Extracts of infected CHO cytoplasm were able to complement uninfected CHO nuclear extracts to synthesize viral DNA on Ad2 templates. This in vitro replication system has the potential to probe host DNA synthesis requirements as well as viral factors. 相似文献
19.
Electron spin resonance (ESR) spin-label methods were used with 5-doxyl-stearic acid as a probe to investigate membrane fluidity of Chinese hamster ovary (CHO) cells during the cell cycle. A 35 GHz ESR technique was developed to study membrane fluidity of intact cells. This technique requires only about the amount of cells compared to the conventional spin-label techniques. With this technique we observed a cyclic change of membrane fluidity during the cell cycle of CHO cells: cells in mitosis had the highest membrane fluidity, whereas cells in G1 and early S phases had the lowest membrane fluidity. 相似文献
20.
N6,O2′-dibutyryl adenosine 3′,5′-cyclic-phosphate (db-cAMP) has been shown to convert Chinese hamster cells of ovarian origin (CHO-K1) from compact, randomly oriented cells growing in multilayers to elongated fibroblast-like cells which grow in monolayers. This compound also has been reported to have a variety of effects on the cell cycle. Most such studies have employed synchronized cells to determine cell cycle effects, and consequently have been limited to the short-term effects of the compound. We have looked for chronic effects on the cell cycle in cultures exposed continuously to db-cAMP from the initiation of the cultures until they had reached or approached the plateau phase. This was done by combined autoradiography and Feulgen microspectrophotometry plus measurements of the protein content of mitotic cells to detect any influence on cell size. The overall results were that continuous exposure to db-cAMP had at most only minor effects on the cell cycle and cell size when the culture medium was renewed daily. Somewhat greater effects were found on plateau-phase cells in cultures in which the medium was not renewed. In this case fewer cells appeared to remain in the cell cycle in the cultures with db-cAMP. Comparison with our earlier results with Chinese hamster V79 cells led to the conclusions that cell cycle parameters and cell size at mitosis were less altered during culture growth in CHO cells, but that CHO cells seemed to be less able to maintain cells in the cell cycle in crowded cultures. 相似文献