首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogenase biosynthesis in Klebsiella pneumoniae including mutant strains, which produce nitrogenase in the presence of NH+4 (Shanmugam, K.T., Chan, Irene, and Morandi, C. (1975) Biochim. Biophys. Acta 408, 101--111) is repressed by a mixture of L-amino acids. Biochemical analysis shows that glutamine synthetase activity in strains SK-24, SK-28, and SK-29 is also repressed by amino acids, with no detectable effect on glutamate dehydrogenase. Among the various amino acids, L-glutamine in combination with L-aspartate was found to repress nitrogenase biosynthesis completely. In the presence of high concentrations of glutamine (1 mg/ml) even NH+4 repressed nitrogenase biosynthesis in the strains SK-27, SK-37, SK-55 and SK-56. Under these conditions, increased glutamate dehydrogenase activity was also detected. Physiological studies show that nitrogenase derepressed strains are unable to utilize NH+4 as sole source of nitrogen for biosynthesis of glutamate for biosynthesis of glutamate, whereas back mutations leading to NH+4 utilization results in sensitivity to repression by NH+4. These findings suggest that amino acids play an important role as regulators of nitrogen fixation.  相似文献   

2.
Rates of nitrogenase synthesis by Klebsiella pneumoniae were measured by pulse-labelling organisms with a mixture of 14C-labelled amino acids followed by sodium dodecyl sulphate gel electrophoresis and autoradiography. Populations from an NH4+-repressed, SO42--limited chemostat (0.46 mg dry wt ml-1), when released from NH4+ repression, simultaneously synthesized detectable quantities of the three nitrogenase polypeptides 45 min before acetylene-reducing activity was observed. Exposure of populations synthesizing nitrogenase to air or NH4+ (200 microgram N ml-1) repressed synthesis of both component proteins simultaneously, the rate initially decreasing by half in 11 to 12 min; in the presence of NH4+ a second slower phase with an approximate half-life of 30 min was observed. With 5% O2 in N2 the half-lives for the decreases in the rates of synthesis were 30 min for the Fe protein and 33 min for the Mo-Fe protein. Oxygen also repressed nitrogenase in a glutamine synthetase constitutive derivative of K. pneumoniae (strain SK24) which escapes NH4+ repression. Regulation of nitrogenase by O2 may therefore be independent of glutamine synthetase.  相似文献   

3.
The effects of the intracellular energy balance and adenylate pool composition on N2 fixation were examined by determining changes in the energy charge (EC) and the ADP/ATP (D/T) ratio of cells in chemostat and batch cultures of Clostridium pasteurianum, Klebsiella pneumoniae, and Azotobacter vinelandii. When cells of C. pasteurianum, K. pneumoniae, and A. vinelandii in sucrose-limited chemostats were examined, in all cases the EC increased greater than or equal to 15% when the nitrogen source was switched from N2 to NH3 and decreased greater than or equal to 15% when the nitrogen source was switched from NH3 to N2. The D/T ratio of the same cultures decreased greater than or equal to 70% when they were switched from N2 to NH3. In such cultures the adenylate pools remained constant when the cells were grown on either NH3 or N2. In nitrogen (NH3)-limited cultures, the adenylate pool was two- to threefold higher than the adenylate pool in sucrose-limited cultures, and the nitrogenase content of such cells was two- to threefold greater than the nitrogenase content of sucrose-limited N2-fixing cells. The EC and D/T ratio of cells from batch cultures of C. pasteurianum growing on NH3 in the presence of N2 were 0.82 and 0.83, respectively, but when the NH3 was consumed and the cells were switched to a nitrogen-fixing metabolism, the EC and D/T ratio changed to 0.70 and 0.90, respectively. Conversely, when NH3 was added to N2-fixing cultures the EC and D/T ratio changed within 1.5 h the EC and D/T ratio of NH3-grown cells. The nitrogen content of N2-fixing cells to which NH3 was added decreased at a rate greater could be accounted for by cell growth in the absence of further synthesis. This decay of nitrogenase activity (with a half-life about 1.2 to 1.4 h) suggests that some type of inactivation of nitrogenase occurs during repression. The nitrogenase of whole cells was estimated to be operating at about 32% of its theoretical maximum activity during steady-state N2-fixing conditions. Similarities in the data from chemostat and batch cultures of both aerobic and anaerobic N2-fixing organisms suggest that low EC and high D/T ratio are normal manifestations of an N2-fixing physiology.  相似文献   

4.
The effect of nitrogen source on the free and bound amino acids of mycelium of Phymatotrichum omnivorum (Shear) Dugg was investigated. The largest free amino acid pool was present in the natural medium and the smallest in the synthetic medium. Phymatotrichum omnivorum was able to utilize different nitrogen sources with the best growth occurring with NH4NO3. The ratio of glycine to alanine and aspartic to glutamic was around 0.25 in the free amino acid pool and around 1 in the bound amino acid pool. The free pool of glutamic acid ranged from 5.6 % to 27.2 % depending upon the nitrogen source in the media. The free pool of alanine ranged from 35.7 % to 17.2 % in relation to the nitrogen source. Most other amino acid ratios did not vary significantly between the free amino acids and the bound amino acids.  相似文献   

5.
Mutations causing constitutive synthesis of glutamine synthetase (GlnC(-) phenotype) were transferred from Klebsiella aerogenes into Klebsiella pneumoniae by P1-mediated transduction. Such GlnC(-) strains of K. pneumoniae have constitutive levels of glutamine synthetase. Two of three GlnC(-) strains of K. pneumoniae studied, each containing independently isolated mutations that confer the GlnC(-) phenotype, continue to synthesize nitrogenase in the presence of NH(4) (+). One strain, KP5069, produces 30% as much nitrogenase when grown in the presence of 15 mM NH(4) (+) as in its absence. The GlnC(-) phenotype allows the synthesis of nitrogenase to continue under conditions that completely repress nitrogenase synthesis in the wild-type strain. Glutamine auxotrophs of K. pneumoniae, that do not produce catalytically active glutamine synthetase, are unable to synthesize nitrogenase during nitrogen limited growth. Complementation of K. pneumoniae Gln(-) strains by an Escherichia coli episome (F'133) simultaneously restores glutamine synthetase activity and the ability to synthesize nitrogenase. These results indicate a role for glutamine synthetase as a positive control element for nitrogen fixation in K. pneumoniae.  相似文献   

6.
The carbon and nitrogen metabolism of Klebsiella pneumoniae M5a1 has been characterized using 13C and 15N labeling with detection by cross-polarization magic-angle spinning solid-state NMR. Cells grown on ammonium typically require some 20 h to derepress fully for nitrogenase when transferred to medium devoid of any source of fixed nitrogen. We have established that during this period some cellular proteins are catabolized with the liberated nitrogen being used for the synthesis of purines needed for formation of ribosomal RNA. The 20-h derepression period can be shortened to 6 h by the introduction of fixed nitrogen in certain specific forms. Serine is the most successful agent we have examined for shortening the derepression period and glycine among the least successful. We attribute this difference to the advantage of serine over glycine in providing both specific and nonspecific carbon and nitrogen sources for complete purine synthesis. These determinations were made by tracing the metabolism of 13C- and 15N-labeled chemical bonds from the 2 amino acids during derepression.  相似文献   

7.
Derepression of nitrogen fixation (nif) genes in Klebsiella pneumoniae following transfer from NH+4-sufficiency to N-free medium was preceded by rapid expansion of the guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool. When derepressed in N-free medium supplemented with glutamine (600 micrograms ml-1), expression from the nifH and nifL promoters, determined as beta-galactosidase activity in nif::lac merodiploid strains, was stimulated 7-fold and nitrogenase activity 26-fold; ppGpp did not accumulate, remaining at the levels found in NH+4-repressed populations. The relaxed mutant K. pneumoniae relA40, which accumulates only very low levels of ppGpp, showed partial derepression of nitrogenase activity in the presence of glutamine, thus ppGpp is unlikely to be an effector of nif expression. ATP and GTP levels were elevated under conditions where nif expression was enhanced, consistent with previous data suggesting that maintenance of ATP levels is a prerequisite for the expression of nif genes in K. pneumoniae.  相似文献   

8.
Vicia faba plants were grown for four and six weeks without externally supplied nitrogen. Some nitrogen was transported to the plant axis from the cotyledons throughout this period, but the amount available was insufficient to support maximum shoot growth. During this period the protein content of the shoot declined whilst the free amino acids, especially aspartic acid, glutamic acid, histamine and the combined pool for threonine, serine, asparagine and glutamine and ammonia, increased in amount. In contrast to the shoot the protein content of the root increased as did their free amino acid content, but the increase in the latter was less than in the shoot and only the combined value for threonine, serine, asparagines and glutamine increased significantly. During tbe last two weeks growth, some soluble non-amino acid compound appeared to donate nitrogen to the pool of free amino acids in the root and shoot.  相似文献   

9.
Biosynthesis of the iron-molybdenum cofactor of nitrogenase   总被引:3,自引:0,他引:3  
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a Mo-Fe-S cluster that has been proposed as the site of substrate reduction for the nitrogenase enzyme complex. Biosynthesis of FeMo-co in Klebsiella pneumoniae requires at least six nif (nitrogen fixation) gene products. One of the nif genes, nifV, apparently encodes a homocitrate synthase. The synthesis and accumulation of homocitrate [(R)-2-hydroxy-1,2,4-butanetricarboxylic acid] in K.pneumoniae is correlated to the presence of a functional nifV gene. K.pneumoniae strains with mutations in nifV synthesize and accumulate an aberrant form of FeMo-co. Nitrogenase from NifV- mutants is capable of reducing some of the substrates of nitrogenase effectively (e.g. acetylene), but reduces N2 poorly. With the aid of an in vitro FeMo-co synthesis system, it recently has been established that homocitrate is an endogenous component of FeMo-co. Substitution of homocitrate with other carboxylic acids results in the formation of aberrant forms of FeMo-co with altered substrate reduction capability.  相似文献   

10.
Klebsiella pneumoniae M5a1 grows well in the presence or absence of molybdenum in media containing excess NH(4) (+). However, growth on N(2) is completely dependent on the presence of molybdenum in the medium. Tungstate competes with the molybdate requirement during growth on N(2). In molybdenum-depleted medium, neither protein component of nitrogenase is active and neither component can be detected antigenically. These data provide evidence that molybdenum is an inducer of nitrogenase synthesis.  相似文献   

11.
Landscape patterns of free amino acids in arctic tundra soils   总被引:16,自引:3,他引:13  
Concentrations of free amino acids were measured in soils from four major ecosystem types in arctic Alaska. Total free amino acid concentrations were several-fold higher than ammonium (the major form of inorganic nitrogen) in water extracts of soils. The dominant free amino acids in these soils were glycine, aspartic acid, glutamic acid, serine, and arginine. Concentrations of total amino acids ranged 5-fold across communities, being highest in tussock tundra and lowest in wet meadows. Incubation experiments indicate that the turnover of amino acids is rapid, which suggests high rates of gross nitrogen mineralization in these soils. The high concentrations and dynamic nature of soil free amino acids suggest that this nitrogen pool is a significant component of nitrogen cycling in these tundra ecosystems.  相似文献   

12.
1. Changes in concentrations of free amino acids and amides have been determined in TMV-infected tobacco leaf discs and in comparable uninfected discs during the time of virus formation. 2. During the period of rapid virus formation the infected discs show a transitory deficiency (as compared to uninfected discs) in glutamine, asparagine, aspartic acid, glutamic acid, serine, and to a lesser extent in valine, threonine, and proline. About 100 hours before this time smaller deficiencies in the concentrations of these components also occur. The latter effect is probably associated with the early synthesis of a non-virus protein in infected tissue. 3. Comparison of the above effects with the known amino acid composition of TMV indicates that it is unlikely that the virus protein is synthesized by condensation of appropriate free amino acids. Rather, the deficiencies observed appear to result from removal of ammonia from the nitrogen pool during synthesis of new proteins in infected tissue. Equilibrium shifts resulting from ammonia withdrawal probably account for the observed deficiencies in amides and free amino acids. TMV protein, therefore, appears to be synthesized de novo, from non-protein nitrogen, probably ammonia. 4. It is suggested that the changes in free amino acid concentrations induced by virus formation may account for some of the symptoms observed in infected plants.  相似文献   

13.
Feedback inhibition of nitrogenase.   总被引:8,自引:4,他引:4       下载免费PDF全文
No inhibition of nitrogenase activity by physiological levels of NH4+ or carbamyl phosphate was observed in extracts of Azotobacter vinelandii. All of the 15N2 reduced by cultures which received no NH4+ was found in the cells. By contrast, more than 95% of the 15N2 reduced by cultures which had been given NH4+ was found in the medium. Failure to examine the culture medium would lead to the erroneous conclusion that N2 fixation is inhibited by NH4+. Nitrogenase in a derepressed mutant strain of A. vinelandii was fully active in vivo in the presence of NH4+. The addition of NH4Cl to N2-fixing cultures resulted in no decrease in the N2-reducing activity of intact cells of Klebsiella pneumoniae or Clostridium pasteurianum and only a small (15%) decrease in A. vinelandii. Therefore, no significant inhibition of nitrogenase by NH4+ or metabolites derived from NH4+ exists in A. vinelandii, K. pneumoniae, or C. pasteurianum.  相似文献   

14.
We report the complete DNA sequence of the Klebsiella pneumoniae nifH gene, the gene which codes for component 2 (Fe protein or nitrogenase reductase) of the nitrogenase enzyme complex. The amino acid sequence of the K. pneumoniae nitrogenase Fe protein is deduced from the DNA sequence. The K. pneumoniae Fe protein contains 292 amino acids, has a Mr = 31,753, and contains 9 cysteine residues. We compare the amino acid sequence of the K. pneumoniae protein with available amino acid sequence data on nitrogenase Fe proteins from two other species, Clostridium pasteurianum and Azotobacter vinelandii. The C. pasteurianum Fe protein, for which the complete sequence is known, shows 67% homology with the K. pneumoniae Fe protein. Extensive regions of strong conservation (90-95%) are found, while other regions show relatively poor conservation (30-35%). It is suggested that these strongly conserved regions are of special importance to the function of this enzyme, and the findings are discussed in the light of evolutionary theories on the origin of nif genes.  相似文献   

15.
Abstract Sphaerostilbe repens utilizes nitrate and ammonium as nitrogen sources. Differentiation of mycelium into rhizomorphs and coremia was reduced in the presence of nitrate and completely inhibited in the absence of calcium. The most abundant free amino acids were, in decreasing order: alanine, glutamine, glutatomic acid, serine, aspartic acid, γ-aminobutyric acid, arginine and threonine. These compounds represented 90% of the total amino acid pool.
The free amino acid composition did not vary with cultural conditions although concentrations of individual amino acids differed. In ammonium-grown cells, γ-aminobutyric acid increased in concentration and glutamate, aspartate and alanine decreased. Calcium-deficient media reduced amino acid concentrations, especially of arginine and ornithine. Amino acid contents increased during the growth period and were higher in rhizomorphs than in vegetative mycelia.  相似文献   

16.
The pathway of ammonium nitrogen assimilation, its incorporationinto amino acids and synthesis of protein was studied with theaid of nitrogen-15. The analysis of 15N involves the use ofoptical emission spectrometry. Kinetic analysis of nitrogen assimilation by the roots indicatesthat glutamine and glutamic acid were the primary products ofammonium assimilation. Possibly some of the amino acids, suchas aspartic acid and alanine received their amino nitrogen directlyfrom free ammonia in the roots. Amino groups were transformedinto other amino acids from these primary products, especiallyfrom glutamic acid through transamination. (Received April 1, 1974; )  相似文献   

17.
Regulation of glutamine synthetase in the blue-green alga Anabaena L-31   总被引:1,自引:0,他引:1  
In N2-grown cultures of Anabaena L-31, in which protein synthesis was prevented by chloramphenicol, presence of NH+4 caused a drastic decrease of glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) activity indicating NH+4-mediated inactivation or degradation of the enzyme. The half-life of glutamine synthetase was more than 24 h, whereas that of nitrogenase (reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolysing), EC 1.18.2.1) was less than 4 h, suggesting that glutamine synthetase may not act as positive regulator of nitrogenase synthesis in Anabaena. Glutamine synthetase purified to homogeneity was subject to cumulative inhibition by alanine, serine and glycine. The amino acids, however, exhibited partial antagonism in this behaviour. Glyoxylate, an intermediate in photorespiration, virtually prevented the amino acid inhibition. Kinetic studies revealed inhibition of the enzyme activity by high Mg2+ concentration under limiting glutamate level and by high glutamate in limiting Mg2+. Maximum enzyme activity occurred when the ratio of glutamate to free Mg2+ was 0.5 to 1.0. The results demonstrate that the enzyme is subject to multiple regulation by various metabolites involved in nitrogen assimilation.  相似文献   

18.
The reduction of N2 to 2NH3 by Klebsiella pneumoniae nitrogenase was studied by a rapid-quench technique. The pre-steady-state time course for N2H4, formed on quenching by the acid-induced hydrolysis of an enzyme-bound intermediate in N2 reduction, showed a 230 ms lag followed by a damped oscillatory approach to a constant concentration in the steady state. The pre-steady-state time course for NH3 formation exhibited a lag of 500 ms and a burst phase that was essentially complete at 1.5s, before a steady-state rate was achieved. These time courses have been simulated by using a previously described kinetic model for the mechanism of nitrogenase action [Lowe & Thorneley (1984) Biochem. J. 224, 877-886]. A hydrazido(2-) structure (=N-NH2) is favoured for the intermediate that yields N2H4 on quenching. The NH3-formation data indicate enzyme-bound metallo-nitrido (identical to N) or -imido (=NH) intermediates formed after N-N bond cleavage to produce the first molecule of NH3 and which subsequently give the second molecule of NH3 by hydrolysis on quenching. The simulations require stoichiometric reduction of one N2 molecule at each Mo and the displacement of one H2 when N2 binds to the MoFe protein. Inhibition by H2 of N2-reduction activity occurs before the formation of the proposed hydrazido(2-) species, and is explained by H2 displacement of N2 at the active site.  相似文献   

19.
(1) Cyanamide (N identical to C-NH2) has been shown to be a substrate for purified Mo-nitrogenases of Klebsiella pneumoniae and Azotobacter chroococcum, with apparent Km values near 0.8 mM. (2) Reduction products were CH4, CH3NH2 and NH3 formed by pathways requiring 6 or 8 electrons: N identical to CNH2 + 6e + 6H+----CH3NH2 + NH3; N identical to CNH2 + 8e + 8H+----CH4 + 2NH3 (3) Acetylene reduction and hydrogen evolution were inhibited more than 75% by cyanamide (10 mM). Cyanamide also inhibited total electron flux at nitrogenase protein component ratios (Fe/MoFe) near 10. (4) Cyanamide was also a substrate for the recently isolated Va-nitrogenase of A. chroococcum, but with an apparent Km of 2.6 mM showed weaker binding and an 8-fold lower Vmax than did either Mo-nitrogenase. (5) The component ratios of nitrogenase proteins favouring CH4 formation was 3.5 Fe/MoFe protein and 1 Fe/VaFe protein.  相似文献   

20.
Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concentrations.Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号