首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

2.
Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg2+]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg2+ concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response.  相似文献   

3.
Recent studies have shown that the activation of NMDA receptors can induce rapid changes in dendritic morphology and synaptic recruitment of AMPA receptors in dendritic spines. Here, we analyze the time course of NMDA receptor-induced changes in dendrite morphology and recruitment of AMPA receptors to synapses in cultured neurons. Activation of NMDA receptors causes a rapid transient increase in the size of preexisting spines and then the gradual formation of new dendritic protrusions and spines. NMDA receptor activation also induced GFP-tagged AMPA receptors to cluster in dendrites and to be inserted into the surface of dendritic spines. These results indicate that NMDA receptor activation induces several phases of dendritic plasticity, initial expansion of dendritic spines, followed by the de novo formation of spines and AMPA receptor dendritic clustering and surface expression on spines. Each of these forms of plasticity may have significant effects on the efficacy of synaptic transmission.  相似文献   

4.
Senn W 《Biological cybernetics》2002,87(5-6):344-355
 Spike-timing-dependent plasticity (STDP) strengthens synapses that are activated immediately before a postsynaptic spike, and weakens those that are activated after a spike. To prevent an uncontrolled growth of the synaptic strengths, weakening must dominate strengthening for uncorrelated spike times. However, this weight-normalization property would preclude Hebbian potentiation when the pre- and postsynaptic neurons are strongly active without specific spike-time correlations. We show that nonlinear STDP as inherent in the data of Markram et al. [(1997) Science 275:213–215] can preserve the benefits of both weight normalization and Hebbian plasticity, and hence can account for learning based on spike-time correlations and on mean firing rates. As examples we consider the moving-threshold property of the Bienenstock–Cooper–Munro rule, the development of direction-selective simple cells by changing short-term synaptic depression, and the joint adaptation of axonal and dendritic delays. Without threshold nonlinearity at low frequencies, the development of direction selectivity does not stabilize in a natural stimulation environment. Without synaptic unreliability there is no causal development of axonal and dendritic delays. Received: 22 April 2002 / Accepted: 23 May 2002 Acknowledgements. This study was supported by the Swiss National Science Foundation (grant 3152-065234.01) and the Silva-Casa foundation. The author thanks Stefano Fusi, Henry Markram, and Misha Tsodyks for helpful discussions, Nissim Buchs and Martin Schneider for their simulations, and Jan Reutimann for proof reading. Correspondence to: e-mail: wsenn@cns.unibe.ch, Tel.: +41-31-6318721, Fax: 41-31-6314611  相似文献   

5.
The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c- jun NH2 terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.  相似文献   

6.
突触长时程增强形成机制的研究进展   总被引:13,自引:0,他引:13  
Xu L  Zhang JT 《生理科学进展》2001,32(4):298-301
高等动物脑内突触传递的可塑性是近30年来神经科学研究的热点,突触传递长时程增强(long-term potentiation,LTP)是神经元可塑性的反映,其形成主要与突触后机制有关。过去关于LTP机制的研究主要集中于N-甲基-D门冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,现认为脑内存在只具有NMDA受体而不具有α-氨基羟甲基恶唑丙酸(AMPA)受体的“静寂突触(silent synapse)”,这一概念的提出,使人们认识到AMPA受体在LTP表达的突触后机制中的重要作用。  相似文献   

7.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

8.
Ye B  Liao D  Zhang X  Zhang P  Dong H  Huganir RL 《Neuron》2000,26(3):603-617
The PDZ domain-containing proteins, such as PSD-95 and GRIP, have been suggested to be involved in the targeting of glutamate receptors, a process that plays a critical role in the efficiency of synaptic transmission and plasticity. To address the molecular mechanisms underlying AMPA receptor synaptic localization, we have identified several GRIP-associated proteins (GRASPs) that bind to distinct PDZ domains within GRIP. GRASP-1 is a neuronal rasGEF associated with GRIP and AMPA receptors in vivo. Overexpression of GRASP-1 in cultured neurons specifically reduced the synaptic targeting of AMPA receptors. In addition, the subcellular distribution of both AMPA receptors and GRASP-1 was rapidly regulated by the activation of NMDA receptors. These results suggest that GRASP-1 may regulate neuronal ras signaling and contribute to the regulation of AMPA receptor distribution by NMDA receptor activity.  相似文献   

9.
AMPA receptors–mediators of fast, excitatory transmission and synaptic plasticity in the brain–achieve great functional diversity through interaction with different auxiliary subunits, which alter both the trafficking and biophysical properties of these receptors. In the past several years an abundance of new AMPA receptor auxiliary subunits have been identified, adding astounding variety to the proteins known to directly bind and modulate AMPA receptors. SynDIG1 was recently identified as a novel AMPA receptor interacting protein that directly binds to the AMPA receptor subunit GluA2 in heterologous cells. Functionally, SynDIG1 was found to regulate the strength and density of AMPA receptor containing synapses in hippocampal neurons, though the way in which SynDIG1 exerts these effects remains unknown. Here, we aimed to determine if SynDIG1 acts as a traditional auxiliary subunit, directly regulating the function and localization of AMPA receptors in the rat hippocampus. We find that, unlike any of the previously characterized AMPA receptor auxiliary subunits, SynDIG1 expression does not impact AMPA receptor gating, pharmacology, or surface trafficking. Rather, we show that SynDIG1 regulates the number of functional excitatory synapses, altering both AMPA and NMDA receptor mediated transmission. Our findings suggest that SynDIG1 is not a typical auxiliary subunit to AMPA receptors, but instead is a protein critical to excitatory synaptogenesis.  相似文献   

10.
Gardner SM  Takamiya K  Xia J  Suh JG  Johnson R  Yu S  Huganir RL 《Neuron》2005,45(6):903-915
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.  相似文献   

11.
 The importance of the hippocampus in spatial representation is well established. It is suggested that the rodent hippocampal network should provide an optimal substrate for the study of unsupervised Hebbian learning. We focus on the firing characteristics of hippocampal place cells in morphologically different environments. A hard-wired quantitative geometric model of individual place fields is reviewed and presented as the framework in which to understand the additional effects of synaptic plasticity. Existent models employing Hebbian learning are also reviewed. New information is presented regarding the dynamics of place field plasticity over short and long time scales in experiments using barriers and differently shaped walled environments. It is argued that aspects of the temporal dynamics of stability and plasticity in the hippocampal place cell representation both indicate modifications to, and inform the nature of, the synaptic plasticity in place cell models. Our results identify a potential neural basis for long-term incidental learning of environments and provide strong constraints for the way the unsupervised learning in cell assemblies envisaged by Hebb might occur within the hippocampus. Received: 8 March 2002 / Accepted: 13 June 2002 Acknowledgements. This work was supported by the Medical Research Council of the United Kingdom. Correspondence to: C. Lever or N. Burgess (e-mail: colin.lever@ucl.ac.uk; n.burgess@ucl.ac.uk, Tel.: +44-20-76793388 or 1147, Fax: +44-20-76791306 or 1145)  相似文献   

12.
Abstract: Activation of the calcium-dependent protease calpain has been proposed to be a necessary step in the formation of long-term potentiation (LTP) in the hippocampus, and stimulation of N-methyl-d -aspartate (NMDA) receptors leads to an increase in intracellular calcium concentration, calpain activation, proteolysis of cytoskeletal elements, and modification of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor properties. In the present study, we evaluated the effects of NMDA treatment of cultured hippocampal slices on the properties of AMPA receptors. Cultured hippocampal slices were treated with NMDA (100 µM) for 15 min and [3H]AMPA binding to membrane fractions was measured. NMDA-treated slices exhibited an increase in both “high-affinity” and “low-affinity” [3H]-AMPA binding, with smaller changes in 6-cyano-7-nitro[3H]quinoxaline-2,3-dione binding. The increase in [3H]AMPA binding was significantly reduced by preincubation of cultures with calpain inhibitor I or calpeptin (100 µM). Furthermore, NMDA exposure decreased the number of GluR1 subunits of AMPA receptors detected by an antibody against the C-terminal domain of the subunit in western blots and resulted in the formation of a lower molecular weight species detected by an antibody against the N-terminal domain. Both effects were completely prevented by calpain inhibitors. These results indicate that NMDA receptor activation produces calpain activation and complex modifications of AMPA receptor properties, which could be involved in NMDA receptor-mediated changes in synaptic efficacy.  相似文献   

13.
Beyond their well-established role as triggers for LTP and LTD of fast synaptic transmission mediated by AMPA receptors, an expanding body of evidence indicates that NMDA receptors (NMDARs) themselves are also dynamically regulated and subject to activity-dependent long-term plasticity. NMDARs can significantly contribute to information transfer at synapses particularly during periods of repetitive activity. It is also increasingly recognized that NMDARs participate in dendritic synaptic integration and are critical for generating persistent activity of neural assemblies. Here we review recent advances on the mechanisms and functional consequences of NMDAR plasticity. Given the unique biophysical properties of NMDARs, synaptic plasticity of NMDAR-mediated transmission emerges as a particularly powerful mechanism for the fine tuning of information encoding and storage throughout the brain.  相似文献   

14.
Chen C  Blitz DM  Regehr WG 《Neuron》2002,33(5):779-788
The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plasticity make prominent contributions to this synaptic depression. During trains of retinal input stimulation, receptor desensitization attenuates the AMPA EPSC while the NMDA EPSC saturates. This differential plasticity may help explain the distinct roles of these receptors in shaping the relay neuron response to visual stimulation with the AMPA component being important for transient responses, while sustained high frequency responses rely more on the NMDA component.  相似文献   

15.

Background

Synaptic plasticity underlies many aspect of learning memory and development. The properties of synaptic plasticity can change as a function of previous plasticity and previous activation of synapses, a phenomenon called metaplasticity. Synaptic plasticity not only changes the functional connectivity between neurons but in some cases produces a structural change in synaptic spines; a change thought to form a basis for this observed plasticity. Here we examine to what extent structural plasticity of spines can be a cause for metaplasticity. This study is motivated by the observation that structural changes in spines are likely to affect the calcium dynamics in spines. Since calcium dynamics determine the sign and magnitude of synaptic plasticity, it is likely that structural plasticity will alter the properties of synaptic plasticity.

Methodology/Principal Findings

In this study we address the question how spine geometry and alterations of N-methyl-D-aspartic acid (NMDA) receptors conductance may affect plasticity. Based on a simplified model of the spine in combination with a calcium-dependent plasticity rule, we demonstrated that after the induction phase of plasticity a shift of the long term potentiation (LTP) or long term depression (LTD) threshold takes place. This induces a refractory period for further LTP induction and promotes depotentiation as observed experimentally. That resembles the BCM metaplasticity rule but specific for the individual synapse. In the second phase, alteration of the NMDA response may bring the synapse to a state such that further synaptic weight alterations are feasible. We show that if the enhancement of the NMDA response is proportional to the area of the post synaptic density (PSD) the plasticity curves most likely return to the initial state.

Conclusions/Significance

Using simulations of calcium dynamics in synaptic spines, coupled with a biophysically motivated calcium-dependent plasticity rule, we find under what conditions structural plasticity can form the basis of synapse specific metaplasticity.  相似文献   

16.
Xie Z  Huganir RL  Penzes P 《Neuron》2005,48(4):605-618
Activity-dependent remodeling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the mechanisms that coordinate synaptic structural and functional plasticity are not well understood. Here we investigate the signaling pathways that enable excitatory synapses to undergo activity-dependent structural modifications. We report that activation of NMDA receptors in cultured cortical neurons induces spine morphogenesis and activation of the small GTPase Rap1. Rap1 bimodally regulates spine morphology: activated Rap1 recruits the PDZ domain-containing protein AF-6 to the plasma membrane and induces spine neck elongation, while inactive Rap1 dissociates AF-6 from the membrane and induces spine enlargement. Rap1 also regulates spine content of AMPA receptors: thin spines induced by Rap1 activation have reduced GluR1-containing AMPA receptor content, while large spines induced by Rap1 inactivation are rich in AMPA receptors. These results identify a signaling pathway that regulates activity-dependent synaptic structural plasticity and coordinates it with functional plasticity.  相似文献   

17.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

18.
Chiu SL  Chen CM  Cline HT 《Neuron》2008,58(5):708-719
Insulin receptor signaling has been postulated to play a role in synaptic plasticity; however, the function of the insulin receptor in CNS is not clear. To test whether insulin receptor signaling affects visual system function, we recorded light-evoked responses in optic tectal neurons in living Xenopus tadpoles. Tectal neurons transfected with dominant-negative insulin receptor (dnIR), which reduces insulin receptor phosphorylation, or morpholino against insulin receptor, which reduces total insulin receptor protein level, have significantly smaller light-evoked responses than controls. dnIR-expressing neurons have reduced synapse density as assessed by EM, decreased AMPA mEPSC frequency, and altered experience-dependent dendritic arbor structural plasticity, although synaptic vesicle release probability, assessed by paired-pulse responses, synapse maturation, assessed by AMPA/NMDA ratio and ultrastructural criteria, are unaffected by dnIR expression. These data indicate that insulin receptor signaling regulates circuit function and plasticity by controlling synapse density.  相似文献   

19.
 We derive a spin-glass-like energy or Lyapunov function for our previously studied neurotrophic model of anatomical synaptic plasticity and neuronal development. This function is then used in Monte-Carlo simulations of the model applied to the development of ocular dominance columns. We discuss the relationship between our model and other models, and speculate on the implications of underlying spin glass structures in many models of neuronal development, learning and plasticity. Received: 1 October 2001 / Accepted in revised form: 15 January 2002  相似文献   

20.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号