首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bouvier M  Demarre G  Mazel D 《The EMBO journal》2005,24(24):4356-4367
Integrons play a major role in the dissemination of antibiotic resistance genes among Gram-negative pathogens. Integron gene cassettes form circular intermediates carrying a recombination site, attC, and insert into an integron platform at a second site, attI, in a reaction catalyzed by an integron-specific integrase IntI. The IntI1 integron integrase preferentially binds to the 'bottom strand' of single-stranded attC. We have addressed the insertion mechanism in vivo using a recombination assay exploiting plasmid conjugation to exclusively deliver either the top or bottom strand of different integrase recombination substrates. Recombination of a single-stranded attC site with an attI site was 1000-fold higher for one strand than for the other. Conversely, following conjugative transfer of either attI strand, recombination with attC is highly unfavorable. These results and those obtained using mutations within a putative attC stem-and-loop strongly support a novel integron cassette insertion model in which the single bottom attC strand adopts a folded structure generating a double strand recombination site. Thus, recombination would insert a single strand cassette, which must be subsequently processed.  相似文献   

3.
4.
The class 1 integron integrase, IntI1, recognizes two distinct types of recombination sites, attI sites, found in integrons, and members of the 59-be family, found in gene cassettes. The efficiencies of the integrative version of the three possible reactions, i.e., between two 59-be, between attI1 and a 59-be, or between two attI1 sites, were compared. Recombination events involving two attI1 sites were significantly less efficient than the reactions in which a 59-be participated, and the attI1 x 59-be reaction was generally preferred over the 59-be x 59-be reaction. Recombination of attI1 with secondary sites was less efficient than the 59-be x secondary site reaction.  相似文献   

5.
Léon G  Roy PH 《Journal of bacteriology》2003,185(6):2036-2041
We found in the environmental strain Nitrosomonas europaea a chromosomal integron-like structure with an integrase gene, intI(Neu). We have tested the capacity of the IntINeu integrase to excise and integrate several resistance gene cassettes. The results allow us to consider IntINeu a new functional integron integrase.  相似文献   

6.
Integrons have the capacity to capture small mobile elements known as gene cassettes, and this reaction is catalysed by integron-encoded IntI integrases. IntI integrases form a distinct family within the tyrosine recombinase superfamily and include a characteristic additional domain that is well conserved. Two different IntI enzymes were used to examine their ability to recognize heterologous attI sites in both integration and excision assays. IntI1 and IntI3 are 59% identical and catalyse both integrative and excisive recombination between a cassette-associated 59-be site and the cognate attI1 or attI3 site. Integrative recombination events involving a 59-be and a non-cognate attI site, attI2 and attI3 for IntI1 or attI1 and attI2 for IntI3, were detected extremely rarely. In cassette excision assays, the non-cognate attI3 site was recognized by IntI1, but attI1 was not well recognized by IntI3. The purified IntI1 and IntI3 proteins bound strongly only to their cognate attI site.  相似文献   

7.
Integrons are DNA elements which generally include one or more discrete gene cassettes inserted at a specific site. We have recently proposed a model for the acquisition and dissemination of genes found in the insert region of integrons, which requires the existence of circularized gene cassettes. Evidence for the existence of covalently closed circular molecules consisting of one or more gene cassettes has now been obtained. Low levels of small molecules which hybridize to probes specific for individual gene cassettes were detected in plasmid DNA isolated from cells containing a plasmid which includes an integron fragment with three gene cassettes aacC1, orfE and aadA2. These molecules were only detected when the gene encoding the integron DNA integrase was also present and are thus products of site-specific cassette excision. The excised cassettes have been shown to be in the form of covalently closed supercoiled circles, by digestion with restriction enzymes exonuclease III and DNase I. The circular excision products detected included either one cassette, aadA2 or orfE, two cassettes, aacC1 and orfE or all three cassettes. The predicted sequence of the recombinant junction in the excised aadA2 cassette confirmed that excision was precise. The predicted unique sequences of the 59-base elements associated with individual genes in the circular cassette form were compiled, and the sequences of the seven-base core sites which flank 59-base elements are now, with few exceptions, exact inverted repeats.  相似文献   

8.
The site-specific recombinase IntI1, encoded by class 1 integrons, catalyses the integration and excision of gene cassettes by recognizing two classes of sites, the integron-associated attI1 site and the 59-base element (59-be) family of sites that are associated with gene cassettes. IntI1 includes the four conserved amino acids that are characteristic of members of the integrase family, and IntI1 proteins with single amino acid substitutions at each of these positions had substantially reduced catalytic activity, consistent with this classification. IntI1 was purified as a fusion protein and shown to bind to isolated attI1 or 59-be recombination sites. Binding to attI1 was considerably stronger than to a 59-be. Binding adjacent to the recombination cross-over point was not detected. A strong IntI1 binding site within attI1 was localized by both deletion and footprinting analysis to a 14 bp region 24–37 bp to the left of the recombination cross-over point, and this region is known to be critical for recombination in vivo ( Recchia et al ., 1994 ). An imperfect (13/15) direct repeat of this region, located 41–55 bp to the left of the recombination cross-over point, contains a weaker IntI1 binding site. Mutation of the stronger binding site showed that a single base pair change accounted for the difference in the strength of binding.  相似文献   

9.
A Gravel  B Fournier    P H Roy 《Nucleic acids research》1998,26(19):4347-4355
Integrons are genetic elements that are able to capture genes by a site-specific recombination mechanism. Integrons contain a gene coding for a lambda-like integrase that carries out site-specific recombination by interacting with two different target sites; the attI site and the palindromic sequence attC (59 base element). Cassette integrations usually involve the attI site, while cassette excisions use attC . Therefore, the integrase should bind both sites to cleave DNA and perform site-specific recombination reactions. We have used purified maltose-binding protein fused with the integrase (MBP-IntI1) and native IntI1 protein and gel retardation assays with fragments containing the complete and partial attI1 site to show formation of four complexes in this region. Chemical modification of specific nucleotides within the attI1 site was used to investigate their interference with binding of the integrase protein. We attribute IntI1 specific binding to four regions in the attI1 site and a GTTA consensus sequence is found in three of the four regions. Interference by modified guanine and thymine residues in the DNA major groove and adenine residues in the minor groove were observed, indicating that the integrase interacts with both sides of the helix. Binding of IntI1 to attC is also discussed.  相似文献   

10.
11.
IntI1 integrase is a member of the prokaryotic DNA integrase superfamily. It is responsible for mobility of antibiotic resistance cassettes found in integrons. IntI1 protein, as well as IntI1-COOH, a truncated form containing its carboxy-terminal domain, has been purified. Electrophoretic mobility shift assays were carried out to study the ability of IntI1 to bind the integrase primary target sites attI and aadA1 attC. When using double-stranded DNA as a substrate, we observed IntI1 binding to attI but not to attC. IntI1-COOH did not bind either attI or attC, indicating that the N-terminal domain of IntI1 was required for binding to double-stranded attI. On the other hand, when we used single-stranded (ss) DNA substrates, IntI1 bound strongly and specifically to ss attC DNA. Binding was strand specific, since only the bottom DNA strand was bound. Protein IntI1-COOH bound ss attC as well as did the complete integrase, indicating that the ability of the protein to bind ss aadA1 attC was contained in the region between amino acids 109 and 337 of IntI1. Binding to ss attI DNA by the integrase, but not by IntI1-COOH, was also observed and was specific for the attI bottom strand, indicating similar capabilities of IntI1 for binding attI DNA in either double-stranded or ss conformation. Footprinting analysis showed that IntI1 protected at least 40 bases of aadA1 attC against DNase I attack. The protected sequence contained two of the four previously proposed IntI1 DNA binding sites, including the crossover site. Preferential ssDNA binding can be a significant activity of IntI1 integrase, which suggests the utilization of extruded cruciforms in the reaction mechanisms leading to cassette excision and integration.  相似文献   

12.
Integrons and gene cassettes: hotspots of diversity in bacterial genomes   总被引:1,自引:0,他引:1  
Integrons are genetic units found in many bacterial species that are defined by their ability to capture small mobile elements called gene cassettes. Cassettes usually contain only one gene, potentially any gene, and an attC recombination site, and thousands of cassettes have been sequenced. A specialized IntI site-specific recombinase encoded by the integron recognizes attC and incorporates cassettes into an attI site located adjacent to the intI gene. Over 100 types of integrons have been found, most in bacterial chromosomes. They can all potentially share the same cassettes and, as recombination between attC in a cassette and an attI can occur repeatedly, an integron can contain from zero to hundreds of cassettes. Cassette arrays that are not located next to an intI gene, or solo cassettes at apparently random sites, are also seen. Hence, integrons contribute to generation of diversity in bacterial, plasmid, and transposon genomes and facilitate extensive sharing of information among bacteria.  相似文献   

13.
Genes borne on cassettes are mobile owing to site-specific recombination systems called integrons, which have created various combinations of antibiotic resistance genes in R-plasmids. In these processes, the palindromic site, attC (59-base element), at cassette junctions has been proposed as being essential. Excised and circularized cassettes have been found to integrate with preference for an attI site at one end of the conserved sequence in integrons. In this work, we give evidence that recombination is possible in the absence of the highly organized attC sites between the more simply organized attI sites. Furthermore, at a very low frequency representing the background in our recombination assay, we observed cross-overs between attI and secondary sites. To characterize recombination excluding the attC sites, we have used naturally occurring attI variants and constructed mutants. The cross-over point was identified between a guanine and a thymine in attI using point mutations. Progressive deletions showed the extent of attI and identified two important regions in the conserved sequence 5' of the cross-over point. A region 27–36 bp 5' of attI influenced recombination with attC sites only, whereas a sequence 9–14 bp 5' of the cross-over point in attI was important for recombination with both attI and attC . Recombination between attI and secondary sites could allow fusion of the conserved sequence encoding the integron site-specific recombinase to new sequences.  相似文献   

14.
Integrons are able to incorporate exogenous genes embedded in mobile cassettes, by a site-specific recombination mechanism. Gene cassettes are collected at the attI site, via an integrase mediated recombination between the cassette recombination site, attC, and the attI site. Interestingly, only three nucleotides are conserved between attC and attI. Here, we have determined the requirements of these in recombination, using the recombination machinery from the paradigmatic class 1 integron. We found that, strikingly, the only requirement is to have identical first nucleotide in the two partner sites, but not the nature of this nucleotide. Furthermore, we showed that the reaction is close to wild-type efficiency when one of the nucleotides in the second or third position is mutated in either the attC or the attI1 site, while identical mutations can have drastic effects when both sites are mutated, resulting in a dramatic decrease of recombination frequency compared to that of the wild-type sites. Finally, we tested the functional role of the amino acids predicted from structural data to interact with the cleavage site. We found that, if the recombination site triplets are tolerant to mutation, the amino acids interacting with them are extremely constrained.  相似文献   

15.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

16.
Site-specific insertion of gene cassettes into integrons   总被引:17,自引:3,他引:14  
Site-specific insertion of gene cassettes into the insert region of integrons has been demonstrated. Insertion was only observed if the integron DNA integrase was expressed in the recipient cell and if the cassette DNA was ligated prior to transformation. The essential ligation products were resistant to treatment with exonuclease III, indicating that they were closed circular molecules. Insertion of cassettes into integron fragments containing either no insert (one recombination site), or one gene cassette (two recombination sites), was demonstrated. In the latter case, insertion occurred predominantly at the core site located 5′ to the resident cassette, which corresponds to the only site available when no insert is present in the recipient. When DNA molecules including two gene cassettes were used, insertion of only one of the gene cassettes was generally observed, suggesting that resolution of the circular molecule to generate two independent circular cassettes occurred more rapidly than insertion into the recipient integron.  相似文献   

17.
An integron is a genetic unit that includes the determinants of the components of a site-specific recombination system capable of capturing and mobilizing genes that are contained in mobile elements called gene cassettes. An integron also provides a promoter for expression of the cassette genes, and integrons thus act both as natural cloning systems and as expression vectors. The essential components of an integron are an int gene encoding a site-specific recombinase belonging to the integrase family, an adjacent site, attl, that is recognized by the integrase and is the receptor site for the cassettes, and a promoter suitably oriented for expression of the cassette-encoded genes. The cassettes are mobile elements that include a gene (most commonly an antibiotic-resistance gene) and an integrase-specific recombination site that is a member of a family of sites known as 59-base elements. Cassettes can exist either free in a circularized form or integrated at the attl site, and only when integrated is a cassette formally part of an integron. A single site-specific recombination event involving the integron-associated attl site and a cassette-associated 59-base element leads to insertion of a free circular cassette into a recipient integron. Multiple cassette insertions can occur, and integrons containing several cassettes have been found in the wild. The integrase also catalyses excisive recombination events that can lead to loss of cassettes from an integron and generate free circular cassettes. Due to their ability to acquire new genes, integrons have a clear role in the evolution of the genomes of the plasmids and transposons that contain them. However, a more general role in evolution is also likely. Events involving recombination between a specific 59-base-element site and a nonspecific secondary site have recently been shown to occur. Such events should lead either to the insertion of cassettes at non-specific sites or to the formation of stable cointegrates between different plasmid molecules, and a cassette situated outside the integron context has recently been identified.  相似文献   

18.
We report the complete sequence of Staphylococcal pathogenicity island bovine 2 (SaPIbov2), encoding the biofilm-associated protein Bap. SaPIbov2 contains 24 open reading frames, including sip, which encodes a functional staphylococcal integrase protein. SaPIbov2 is bordered by 18 bp direct repeats. The integration site into the chromosome lies at the 3' end of a gene encoding GMP synthase. SaPIbov2 has extensive similarity to previously described pathogenicity islands of Staphylococcus aureus. The principal difference is that toxin genes present in the other pathogenicity islands are exchanged for a transposon-like element that carries the bap gene and genes encoding an ABC transporter and a transposase. Also, SaPIbov2 can be excised to form a circular element and can integrate site-specifically and RecA-independently at a chromosomal att site in a Sip-dependent manner. This was demonstrated both in S. aureus and with plasmid substrates ectopically in Escherichia coli. Thus, SaPIbov2 encodes a functional recombinase of the integrase family that promotes element excision and insertion/integration. In addition, we demonstrated that the presence of SaPIbov2 facilitated the persistence of S. aureus in an intramammary gland infection model. Finally, different bovine isolates of S. aureus were found to carry islands related to SaPIbov2, suggesting the existence of a family of related pathogenicity islands.  相似文献   

19.
Ke X  Gu B  Pan S  Tong M 《Archives of microbiology》2011,193(11):767-774
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.  相似文献   

20.
An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlueScript II KS+ (pBSLTR) vector, and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the ORF of the lacZ gene contained in the vector; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction. Upon IPTG induction of E. coli XL-1 Blue cells obtained by cotransformation with plasmids pACCint and pBSLTR on an X-gal-containing medium, blue clones appeared with a frequency of 1 x 10(-3) to 1 x 10(-4), the frequency of spontaneously appearing blue colonies not exceeding 10(-9) to 10(-8). The presence of blue colonies indicated that that the integrase encoded by the INT ORF2 (pACYC 184) fragment was active. After the expression of the integrase, it recognized and excised the gypsy LTR from pBSLTR, precisely restoring the nucleotide sequence and the function of the lacZ gene, which led to the expression of the beta-galactosidase enzymatic activity. PCR analysis confirmed that the LTR was excised precisely. Thus, the resultant biplasmid model system allowed precise excisions of the gypsy LTR from the target site to be detected. Apparently, the gypsy integrase affected not only the LTR of this mobile element, but also the host genome nucleotide sequences. The system is likely to have detected only some of the events occurring in E. coli cells. Thus, the integrase of gypsy is actually capable of not only transposing this element by inserting DNA copies of the gypsy retrotransposon to chromosomes of Drosophila, but also excising them, gypsy is excised via a precise mechanism, with the original nucleotide sequence of the target site being completely restored. The obtained data demonstrate the existence of alternative ways of the transposition of retrotransposons and, possibly, retroviruses, including gypsy (mdg4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号