首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Two diploid potato parents, W5295.7 and W5337.3, and their colchicine-doubled tetraploids were used as male to cross with three cultivars: ‘Raritan’, ‘Shepody’ and ‘Superior’. Both diploids produced 2n gametes via first division restitution (FDR) during meiosis. Field experiments were carried out on seedlings of the 12 hybrid progenies in 1991 and 1992. Six of the progenies represented the tetraploid-diploid (4x-2x) hybrids and the other six tetraploid-tetraploid (4x-4x) progenies. The genetic consequence of FDR gametes was examined by comparing the mean and genotypic variance of six tuber traits of 4x-2x and 4x-4x progenies. Tuber appearance, eye depth, specific gravity and tuber size showed significant differences between the means of 4x-2x and 4x-4x progenies from either both or one of the diploid parents. The genotypic variances of these traits in 4x-2x progenies were reduced in various degrees from those observed in 4x-4x progenies. Major genes responsible for the inheritance of these traits are probably located close to the centromere. The two diploid parents may also carry alleles of different size and direction of non-additive genic effects in their 2n gametes. The 4x-2x progenies also outperformed the 4x-4x progenies with respect to the means of total and marketable yield. There were thus heterotic gene loci for high yield located close to the centromere. No marked reduction of genotypic variance, however, was observed. The results suggest that genes for yield would be scattered between the centromere and the site for maximum recombination. Received: 24 April 1996 / Accepted: 26 July 1996  相似文献   

2.
Numerically unreduced (2n) gametes from first division restitution (FDR) are considered to be superior to 2n-gametes from second division restitution (SDR) because they transfer a larger proportion of the total parental heterozygosity and epistasis intact to the tetraploid progeny. This supposed superiority was investigated by comparing 12 sets of reciprocal 4x-2x crosses. Each diploid parent used in a reciprocal set produced 2n-pollen by FDR and 2n-eggs by SDR. Six agronomic characters were investigated. FDR progenies (from 4x.2x) were found to have higher mean yields due to more and bigger tubers. With respect to underwater weight, the overall progeny mean of FDR progenies was significantly higher than that of SDR progenies (from 2x.4x). However, the absolute difference found between both overall progeny means was too small to be of practical significance. No differences between FDR and SDR progeny means were found for vine maturity and chip colour. In addition to the progeny mean, within-progeny variation is important in potato breeding. For vine maturity a higher within-progeny variation was detected in SDR progenies, whereas within-progeny variations for yield, underwater weight and chip colour were not different in FDR and SDR progenies. With regard to vine maturity, we conclude that SDR 2n-gametes are superior to FDR 2n-gametes because, with the same progeny means of FDR and SDR progenies, the within-progeny variation was higher in SDR progenies. Therefore the assumed superiority of FDR 2n-gametes was confirmed for yield but was not observed for vine maturity, underwater weight and chip colour.  相似文献   

3.
Heterozygosity in 2n gametes of potato evaluated by RFLP markers   总被引:3,自引:0,他引:3  
The heterozygosity transmitted through 2n gametes in potato was evaluated by following the segregation of RFLP markers in tetraploid progeny from bilateral sexual polyploidization in a cross between two diploid (2x) interspecific hybrids which produce 2n SDR eggs or 2n FDR pollen. Out of 84 probe/enzyme combinations tested, 23 revealed polymorphism between the parents and were heterozygous in at least one of the parents. These probes characterized 13 loci distributed on five different chromosomes of the potato RFLP map. The heterozygosity transmitted through SDR and FDR gametes was estimated to be 31.8% and 71.4%, respectively. Two different indices (LH and RHI) were used to select plants showing a high level of heterozygosity in the tetraploid progeny. The recombination events and the centromere positions were estimated for chromosomes I, VI and VII, following the segregation ratios of SDR or FDR gametes produced by the parents. A different recombination rate was observed between the two interspecific hybrids.Contribution no. 119 from Research Centre for Vegetable Breeding, C.N.R., Portici, Italy. Research supported by National Research Council of Italy, special Project RAISA, Sub-project No. 2, Paper No. 2090  相似文献   

4.
Summary Two of the four strands of a bivalent are recovered together in tetraploid progeny arising from 4x-2x matings. This provides a method for gene and centromere mapping. The cross pppp x Pp produced 62 nulliplex tetraploid individuals in a total of 951, i.e., 6.5%. The diploid clone was found to produce diplandrous gametes through first division restitution (FDR). The map distance P-centromere was estimated as 13.0 units, the limiting values at the 95% binomial confidence interval being 10.1 and 16.3. The mapping method is explained in detail and a formula is deduced to obtain genotypic series of 2n gametes under particular assumptions. The direction 4x×2x is advantageous, since high seed set diploid clones which give 99% tetraploid progeny, and whose method of diplandroid formation is known are already available. Diploid clones heterozygous for many markers and tetraploids nulliplex for the same markers are needed to fully exploit this method.  相似文献   

5.
Summary The potential breeding value of 2n gametes from diploid alfalfa (2n = 2x = 16) was tested by comparing single cross alfalfa hybrids produced via 2n = 2x gametes from diploids versus n = 2x gametes from somatic-chromosome-doubled, tetraploid counterparts. Three diploid clones, designated 2x-(rprp), homozygous for the gene rp (conditions 2n gamete formation by a first division restitution mechanism) were colchicine-doubled to produce their tetraploid counterparts, designated 4x-(SCD). These six clones were crossed as males to the same cytoplasmic male sterile clone. Yield comparisons of progeny from the six clones demonstrated a significant yield increase of the hybrid progeny from 2n = 2x gametes from the diploids over the hybrid progeny from n = 2x gametes from the chromosome doubled tetraploid counterparts. The yield gain ranged from a 12% increase to a 32% increase. Theoretical comparisons indicated the 2n = 2x gametes from diploids would have 12.5 to 50% more heterozygous loci, on average, than the n = 2x gametes derived from somatic doubling. These results confirm the importance of heterozygosity on alfalfa yield, and the results demonstrate that 2n gametes formed by first division restitution offer a unique method for producing highly heterotic alfalfa hybrids.  相似文献   

6.
The cultivated potato Solanum tuberosum Dunal has many wild related species with desirable traits. Some of these wild tetraploids have disomic chromosome pairing, ready selfing with little inbreeding depression, but have strong crossing barriers with cultivars. They hybridize most easily with 2EBN forms (which include most diploid species). Chromosome doubling to the 8x level, use of 2n gametes, use of 2n gametes of 4x-2x triploid hybrids, and embryo rescue have been proposed to overcome the crossability barrier of these species with S. tuberosum. In this study, 2x S. commersonii (cmm) was used as a bridge species with S. acaule and series Longipedicellata species. Synthetic tetraploid 4x-cmm crossed readily to disomic 4x species, resulting in fertile F1 and F2 hybrids. Some of these had 2n gametes, which enabled direct crossing to tuberosum, resulting in 6x hybrids. The benefits of this scheme are (i) hybrids are relatively fertile, so many progeny may be produced for selection at each step, (ii) hybridization with cmm results in 2n gametes needed for crossing to tuberosum, and breaks up restricted recombination within disomic genomes, and (iii) simple techniques and tools are employed.  相似文献   

7.
A detailed analysis of microsporogenesis was carried out in three diploid lily cultivars (2n=2x=24) and three diploid interspecific hybrids (2n=2x=24) using DNA in situ hybridisation methods (GISH and FISH). In cvs. Gelria (Lilium longiflorum; L genome), Connecticut King and Mont Blanc (both Asiatic hybrids; Agenome) meiosis was regular and only haploid gametes were formed while the three interspecific hybrids between L. longiflorum×Asiatic hybrid (LA) showed a variable frequency of meiotic nuclear restitution and stainable 2n-pollen formation ranging from 3% to 30%. An analysis of meiotic chromosome behaviour of the LA hybrids through GISH and FISH revealed that: (1) the parental chromosomes could be clearly discriminated into univalents, half-bivalents and bivalents in the PMCs; (2) in some of the PMCs the entire complement was present either as univalents or half-bivalents which had the potential to divide equationally (following centromere division) during the first division leading to first division restitution (FDR) gametes; (3) more frequently, however, in one and the same PMC the univalents and half-bivalents divided equationally whereas the bivalents disjoined reductionally at the same time giving rise to 2n-gametes that could vary from the well-known FDR or SDR 2n-gametes. We indicate this novel type of restitution mechanism as Indeterminate Meiotic Restitution (IMR). In order to confirm the occurrence of IMR gametes, the chromosome constitutions of eight triploid BC1 progenies derived from backcrossing the 2n-gamete producing the LAhybrids to the Asiatic hybrid parents were analysed through in situ hybridisation. The results indicated that there were seven BC1 plants in which FDR 2n-gametes, with or without homoeologous recombinations, were functional, whereas in one case the 2n-gamete resulting from IMR was functional. In the latter, there was evidence for the occurrence of genetic recombination through homoeologous crossing-over as well as through the assortment of homoeologous chromosomes. A singular feature of the IMR 2n-gamete was that although it transmitted a euploid number of 24 chromosomes to the BC1 progeny, the number of chromosomes transmitted from the two parental species was dissimilar: 9 L-genome chromosomes and 15 A-genome chromosomes instead of 12 of each. Received: 15 May 2000 / Accepted: 4 December 2000  相似文献   

8.
The significance of 2N gametes in potato breeding   总被引:7,自引:0,他引:7  
Summary Phureja-haploid Tuberosum hybrids, which produce 2n gametes in addition to n gametes, were used to obtain diploid progenies in 2x – 2x matings, and tetraploid progeny in 4x – 2x matings. Seven of these diploid clones were intermated in a modified diallel design, and also crossed to seven cultivars, to obtain 21, 16-clone diploid; and 49 (35, 2x X 4x and 14, 4x X 2x) 24-clone tetraploid families, respectively. These progenies were included together with the 14 parental clones, in a tuber yield trial conducted in two locations in Wisconsin. Heterotic responses were striking in 4x X 2x progenies. Three of these entries had mean yields of 5.0, 5.0 and 5.2 lbs/hill, for 24 unselected clones, thus outyielding not only the mid-parent but also the best tetraploid cultivars in the experiment, which are highly selected; Wis 643 (4.8 lbs/hill), and Kennebec (4.8 lbs/hill). As a group, the 14, 4x X 2x families averaged 4.4 lbs/hill, while the mean of all seven cultivars was 4.0 lbs/hill, and the mid-parent was at 3.4 lbs/hill. This unusually high mean performance of 336 unselected clones represented in the 14, 4x X 2x progenies, is interpreted as a manifestation of the capacity of 2n pollen, formed by first meiotic division restitution (FDR), to pass onto the progeny the already heterotic diploid genotype in a largely intact array. Beneficial intra and inter-locus interactions are presumably compounded upon syngamy with an unrelated n egg from the tetraploid parent. -The performance of 2x X 4x progenies was at or below that of the midparent. The failure of these families to perform as well as 4x X 2x families may be a reflection of the incapacity of 2n megasporogenesis to avoid meiotic reassortment as efficiently as FDR does, which would result in inbred 2n gametes. However, the method of 2n megasporogenesis is not known.Hereditary variances were large, both within and among families, and indicated considerable nonadditivity in the action of genes affecting tuber yield at both levels of ploidy. Inbreeding was strongly depressing at both ploidy levels.  相似文献   

9.
From biological and genetic standpoints, centromeres play an important role in the delivery of the chromosome complement to the daughter cells at cell division. The positions of the centromeres of potato were determined by half-tetrad analysis in a 4x-2x population where the male parent produced 2n pollen by first-division restitution (FDR). The genetic linkage groups and locations of 95 male parent-derived amplified fragment length polymorphism markers could be determined by comparing their position on a 2x-2x highly saturated linkage map of potato. Ten centromere positions were identified by 100% heterozygosity transmitted from the 2n heterozygous gametes of the paternal parent into the tetraploid offspring. The position of these centromeric marker loci was in accordance with those predicted by the saturated 2x-2x map using the level of marker clustering as a criterion. Two remaining centromere positions could be determined by extrapolation. The frequent observation of transmission of 100% heterozygosity proves that the meiotic restitution mechanism is exclusively based on FDR. Additional investigations on the position of recombination events of three chromosomes with sufficient numbers of markers showed that only one crossover occurred per chromosome arm, proving strong interference of recombination between centromere and telomere.  相似文献   

10.

Key message

Tetraploid clementine displays mainly tetrasomic inheritance. Genetic structures of 2n SDR and 2 × gametes from DD clementine are complementary and will guides triploids citrus breeding strategies.

Abstract

Triploid breeding is developed worldwide to create new seedless cultivars. Citrus triploid hybrids can be recovered from 2x × 2x sexual hybridizations as a consequence of the formation of unreduced gametes (2n), or from 4x × 2x interploid hybridizations in which tetraploid parents used are most often doubled-diploid (DD). Here we have analyzed the inheritance in doubled-diploid clementine and compared the genetic structures of gametes of DD clementine with SDR unreduced gametes of diploid clementine. Parental heterozygosity restitution (PHR) with DD parents depends on the rate of preferential chromosome pairing and thus the proportion of disomic versus tetrasomic segregations. Doubled-diploid clementine largely exhibited tetrasomic segregation. However, three linkage groups had intermediate segregation and one had a tendency for disomy. Significant doubled reduction rates (DR) rates were observed in six of the nine LGs. Differences of PHR between 2n SDR and 2x DD gametes were highest in the centromeric region and progressively decreased toward the distal regions where they were not significant. Over all markers, PHR was lower (two-thirds) in SDR 2n gametes than in DD-derived diploid gametes. The two strategies appear complementary in terms of genotypic variability. Interploid 4x × 2x hybridization is potentially more efficient for developing new cultivars that are phenotypically closer to the diploid parent of the DD than sexual hybridization through SDR 2n gametes. Conversely, 2x × 2x triploidisation has the potential to produce novel products with characteristics for market segmentation strategies.
  相似文献   

11.
A program of sexual polyploidization was carried out in alfalfa using plants from wild diploid species that produced male or female unreduced gametes. Sixteen progenies from 2x-4x and 2x-2x crosses were examined with a combination of morphological, cytological and molecular analyses. The chromosome counts revealed diploid, tetraploid and aneuploid plants. Plants with B chromosomes were also detected. The leaf area of the plants was a useful characteristic for distinguishing tetraploid from diploid plants obtained by unilateral or bilateral sexual polyploidization. Leaf shape and leaf margin were not correlated with the ploidy levels. Plants with supernumerary chromosomes displayed obovate or elliptic leaves which differed markedly from the range of forms typical of diploid and tetraploid alfalfa plants. RAPD markers were investigated in all progeny plants to determine maternal and paternal amplification products. Three alfalfa-specific primers proved to be effective in revealing the hybrid origin of the plants. A combination of cytological, morphological and molecular analyses is essential for a detailed genetic characterization of progenies in programs of sexual polyploidization.  相似文献   

12.
Polyploid plants are formed when numerically unreduced (2n) gametes participate in fertilization. Based on cytological and genetic analyses, modes of 2n gamete formation have been determined for a number of plant species. Gametes formed by a first-division restitution (FDR) mechanism contain nonsister chromatids near the centromere, whereas those formed by second-division restitution (SDR) contain sister chromatids. These mechanisms differ in the proportion of heterozygous loci they transmit intact to offspring. This paper estimates the transmission of heterozygosity on an individual chromosome basis through pachytene analysis of chromosomes of haploids (2n = 2x = 24) of Solanum tuberosum Andigena Group (2n = 4x = 48), a South American cultivated potato. Transmission of heterozygosity by FDR and SDR 2n gametes was calculated for 6 different cytogenetic assumptions. FDR was more than twice as effective as SDR in transmission of heterozygosity under all 6 scenarios. Rates of transmission of heterozygosity were similar in each situation. Transmission of heterozygosity by FDR was also compared with transmission of heterozygosity by tetrasomic inheritance and found to be approximately 50% more effective.  相似文献   

13.
Artificial tetraploid somatic hybrids have been developed for sterile triploid citrus breeding by sexual hybridization between diploid and tetraploid somatic hybrids. The genetic structure of diploid gametes produced by tetraploid genotypes depends on the mode of chromosome association at meiosis. In order to evaluate tetraploid inheritance in a tetraploid interspecific somatic hybrid between mandarin and lemon, we performed segregation studies using cytogenetic and single sequence repeat molecular markers. Cytogenetic analysis of meiosis in the somatic hybrid revealed 11% tetravalents and 76% bivalents. Inheritance of the tetraploid hybrid was analyzed by genotyping the triploid progeny derived from a cross between a diploid pummelo and the tetraploid somatic hybrid, in order to derive genotypes of the meiospores produced by the tetraploid. A likelihood-based approach was used to distinguish between disomic, tetrasomic, and intermediate inheritance models and to estimate the double reduction rate. In agreement with expectations based the cytogenetic data, marker segregation was largely compatible with tetrasomic and inheritance intermediate between disomic and tetrasomic, with some evidence for preferential pairing of homoeologous chromosomes. This has important implications for the design of breeding programs that involve tetraploid hybrids, and underscores the need to consider inheritance models that are intermediate between disomic and tetrasomic.  相似文献   

14.
Summary Parthenogenetic seed induction was performed on one clone of Solanum tuberosum subspecies andigena (2n=4x=48) using S. phureja (2n=2x=24) marker inducer clones. The parthenogenetic population when grown was found to contain both diploid and tetraploid individuals presumably arising from reduced and unreduced gametes, respectively. Variation patterns in the diploid and tetraploid sub-populations, as well as a population obtained by selfing the parental clone, were compared to try and elucidate the origin of the tetraploid parthenotes. From the results of this one generation it appeared that the tetraploid parthenogenetic plants had been produced by a mechanism equivalent to second division restitution (SDR).  相似文献   

15.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

16.
 The 2n-pollen grains formed by first-division restitution without crossover (FDR-NCO) are unique breeding tools, since they can transmit almost 100% of non-additive genetic effects from the parent to the progeny. FDR-NCO gametes are considered superior to those formed by FDR with crossing over (FDR-CO), which can pass on to the progenies approximately 80% of the heterozygosity and a large fraction of the epistasis. However, 2n-pollen formation by FDR-NCO mechanism requires the incorporation (in homozygous condition) of at least two recessive alleles. In the present work, 40 tetraploid families derived from complete 4x-2x factorial crosses were evaluated under short-day conditions to verify whether or not the postulated genetic superiority of FDR-NCO over FDR-CO gametes holds true for eight quantitative traits in potato. Families were derived from crosses between four 4x commercial cultivars, and a random sample of ten diploid Solanum phureja-haploid S. tuberosum hybrids producing 2n-pollen by either FDR-CO or FDR-NCO. The results indicated no significant superiority of FDR-NCO over FDR-CO families for total tuber yield (TTY) and six other traits (haulm maturity – HM; plant vigor – PV; plant uniformity – PU; eye depth – ED; number of tubers per hill – NTH; and commercial over total yield index – CTI). Based upon cytological observations, the FDR-CO and FDR-NCO gametes are expected to be genetically equivalent for all loci between the centromeres and the chromosomal site of maximum recombination. In our experiment, differences between FDR-CO- and FDR-NCO-derived progenies were not observed for TTY. Therefore, our results can be interpreted as additional evidence for the hypothesis that genes with major effect on TTY expression might have a physical location between centromeres and proximal crossovers in the potato chromosomes. In addition, a similar trend was observed for HM, PV, and ED but apparently not for commercial yield – CY (i.e., tubers with more than 33 mm in diameter). Received: 21 September 1998 / Accepted: 26 October 1998  相似文献   

17.
Summary The level and mode of 2n megaspore formation was studied in full-sib diploid potato clones with either normal or desynaptic (ds-1ds-1) meiosis. Cytological analysis revealed that functional 2n megaspores produced by normal and desynaptic clones originate exclusively from second division restitution (SDR) and first division restitution (FDR), respectively. SDR 2n megaspores resulted from the omission of the second meiotic division following chromosome doubling after anaphase I, whereas FDR 2n megaspores resulted from a direct equational division of univalent chromosomes at anaphase I (pseudohomotypic division). Comparative data strongly indicated that the observed mechanisms of SDR and FDR 2n megaspore formation are extremes of a continuum that is being brought about by common genes for precocious chromosome division. Depending on the relative timing of cell cycle and chromosome division, this precocious chromosome division may impose postreductional (SDR) or prereductional (FDR) restitution of the sporophytic chromosome number under normal synaptic and desynaptic conditions, respectively. The observed frequencies of 2n megaspores closely correlated with seed set, following pollination by tetraploid varieties and by desynaptic diploid clones with exclusive FDR 2n pollen formation. Up to 54.0 and 21.5 seeds/ fruit were obtained from normal synaptic (SDR) and desynaptic (FDR) progeny, respectively. The high frequency of segregants with either SDR or FDR 2n megaspore formation (78.0 and 45.2%, respectively) supports the hypothesis that sexual polyploidization is the driving force behind the origin and evolution of polyploid Solanum species. The present identification of diploid potato clones with consistent FDR 2n megaspore formation extends the opportunities for direct transfer of enhanced diploid germ plasm to tetraploids, and particularly advocates the feasibility of 2x(ds-1; FDR)×2x(ds-1; FDR) breeding schemes in cultivar development and the production of relatively vigorous and uniform true potato seed (TPS) varieties. Its potential value and limitations for breeding and the experimental induction of diplosporic apomixis are discussed.  相似文献   

18.
? Premise of the study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their formation bottleneck, newly formed tetraploids start out with little variation. Tetraploids may attain genetic variation through a combination of new mutations, recurrent formation, and gene exchange with diploid ancestors or related tetraploid species. We explore the role of gene exchange and introgression in autotetraploid Rorippa amphibia, a species that harbors more genetic variation than its diploid ancestors. ? Methods: We crossed autotetraploid R. amphibia to diploid conspecifics and tetraploid R. sylvestris and backcrossed resulting F(1) hybrids. We used flow cytometry to determine the ploidy of all progeny. ? Key results: Tetraploids of R. amphibia and R. sylvestris were interfertile; F(1) hybrids were fertile and could backcross. Crosses between diploids and tetraploids yielded a small number of viable, often tetraploid progeny. This indicates that unreduced gametes can facilitate gene flow from diploids to tetraploids. We detected a frequency of unreduced gametes of around 2.7 per 1000, which was comparable between diploids and tetraploids. ? Conclusions: Introgression from tetraploid R. sylvestris provides a realistic source of variation in autotetraploid R. amphibia. Only in a scenario where other compatible partners are absent, for example immediately after tetraploidization, gene flow through unreduced gametes from diploids could be an important source of genetic variation for tetraploids.  相似文献   

19.
In haploid and diploid organisms of the plant kingdom, meiotic division of diploid cells proceeds in two consecutive stages, with DNA replicating only once. In amphihaploids (interspecific or intergeneric hybrids), where homologs are absent, the reduction of the chromosome number does not occur, meiosis is abnormal, and the plants are sterile. Gamete viability in F1 hybrids is ensured by a single division when chromosomes are separated into sister chromatids in either the first or the second division. Such gametes ensure partial fertility of amphihaploids, thereby facilitating their survival and stabilization of the polygenome. The frequency of the formation of viable gametes varies from a few cases to 98.8% in different anthers of the hybrids. Here, studies on the cytological mechanisms and genetic control of chromosome unreduction or restitution in different amphihaploids of the tribe Triticeae are reviewed. The current notions on the control of formation of restitution nuclei based on the principles of a prolonged metaphase I and different types of meiocytes. The main terms used for systematization of restitution mechanisms are first-division restitution (FDR), single-division meiosis (SDM), and unreductional meiotic cell division (UMCD). It has been assumed that archesporial cells of wide hybrids may have two cell division programs, the meiotic and the mitoyic ones The possible approaches to the analysis of the genetic control of chromosome restitution in amphihaploids are discussed.  相似文献   

20.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号