首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptide hormone gastrin has been identified as a major regulator of acid secretion and a potent mitogen for normal and malignant gastrointestinal cells. The importance of gastric acid in the absorption of dietary iron first became evident 50 years ago when iron deficiency anemia was recognized as a long-term consequence of partial gastrectomy. This review summarizes the connections between circulating gastrins, iron status and colorectal cancer. Gastrins bind two ferric ions with micromolar affinity and, in the case of non-amidated forms of the hormone, iron binding is essential for biological activity in vitro and in vivo. The demonstration of an interaction between gastrin and transferrin by biochemical techniques led to the proposal that gastrins catalyze the loading of transferrin with iron. Several lines of evidence, including the facts that the concentrations of circulating gastrins are increased in mice and humans with the iron overload disease hemochromatosis and that transferrin saturation positively correlates with circulating gastrin concentration, suggest the potential involvement of gastrins in iron homeostasis. Conversely, recognition that ferric ions play an unexpected role in the biological activity of gastrins may assist in the development of useful therapies for colorectal carcinoma and other disorders of mucosal proliferation in the gastrointestinal tract.  相似文献   

2.
This minireview explores the connections between circulating gastrins, iron status and colorectal cancer. The peptide hormone gastrin is a major regulator of acid secretion and a potent mitogen for normal and malignant gastrointestinal cells. Gastrins bind two ferric ions with μM affinity and, in the case of non-amidated forms of the hormone, iron binding is essential for biological activity. The ferric ion ligands have been identified as glutamates 7, 8 and 9 in the 18 amino acid peptide glycine-extended gastrin. An interaction between gastrin and transferrin was first demonstrated by covalent crosslinking techniques, and has been recently confirmed by surface plasmon resonance. We have therefore proposed that gastrins act as catalysts in the loading of transferrin with iron. Several recent lines of evidence, including the facts that the concentrations of circulating gastrins are increased in mice and humans with the iron overload disease haemochromatosis, and that transferrin saturation positively correlates with circulating gastrin concentrations, suggest that gastrins may be involved in iron homeostasis. In addition the recognition that ferric ions may play an unexpected role in the biological activity of non-amidated gastrins may assist in the development of new therapies for colorectal carcinoma.  相似文献   

3.
The observations that the peptide hormone gastrin interacts with transferrin in vitro and that circulating gastrin concentrations are increased in the iron-loading disorder hemochromatosis suggest a possible link between gastrin and iron homeostasis. This study tested the hypothesis that gastrin and iron status are interrelated by measurement of iron homeostasis in mice and humans with abnormal circulating gastrin concentrations. Intestinal iron absorption was determined by (59)Fe uptake following oral gavage, and concentrations of duodenal divalent metal transporter-1 (DMT-1) and hepatic hepcidin mRNAs were determined by quantitative real-time PCR in agastrinemic (GasKO), hypergastrinemic cholecystokinin 2 receptor-deficient (CCK2RKO), or wild-type mice. Iron status was measured by standard methods in the same mice and in hypergastrinemic humans with multiple endocrine neoplasia type 1 (MEN-1). Iron absorption was increased sixfold and DMT-1 mRNA concentration fourfold, and transferrin saturation was reduced 0.8-fold and hepcidin mRNA expression 0.5-fold in juvenile GasKO mice compared with age-matched wild-type mice. In mature mice, few differences were observed between the strains. Juvenile CCK2RKO mice were hypergastrinemic and had a 5.4-fold higher DMT-1 mRNA concentration than wild-type mice without any increase in iron absorption. In contrast to juvenile GasKO mice, juvenile CCK2RKO mice had a 1.5-fold greater transferrin saturation, which was reflected in a twofold increase in liver iron deposition at maturity compared with wild-type mice. The correlation between transferrin saturation and circulating gastrin concentration observed in mutant mice was also observed in human patients with MEN, in whom hypergastrinemia correlated positively (P = 0.004) with an increased transferrin saturation. Our data indicate that, in juvenile animals when iron demand is high, circulating gastrin concentrations may alter iron status by a CCK2R-independent mechanism.  相似文献   

4.
Mice lacking the cholecystokinin (CCK)-B/gastrin receptor have been generated by targeted gene disruption. The roles of this receptor in controlling gastric acid secretion and gastric mucosal growth have been assessed. The analysis of homozygous mutant mice vs. wild type included measurement of basal gastric pH, plasma gastrin concentrations as well as quantification of gastric mucosal cell types by immunohistochemistry. Mutant mice exhibited a marked increase in basal gastric pH (from 3.2 to 5.2) and about a 10-fold elevation in circulating carboxyamidated gastrin compared with wild-type controls. Histologic analysis revealed a decrease in both parietal and enterochromaffin-like (ECL) cells, thus explaining the reduction in acid output. Consistent with the elevation in circulating gastrin, antral gastrin cells were increased in number while somatostatin cells were decreased. These data support the importance of the CCK-B/gastrin receptor in maintaining the normal cellular composition and function of the gastric mucosa.  相似文献   

5.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   

6.
Progastrin (PG) is processed into a number of smaller peptides including amidated gastrin (Gamide), non-amidated glycine-extended gastrin (Ggly) and the C-terminal flanking peptide (CTFP). Several groups have reported that PG, Gamide and Ggly are biologically active in vitro and in vivo, and are involved in the development of gastrointestinal cancers. CTFP is bioactive in vitro but little is known of its effects in vivo. This study investigated the bioactivity of CTFP in vivo in normal tissues using gastrin deficient (GASKO) mice and in two mouse models of cancer (SCID mice bearing xenograft tumors expressing normal or knocked-down levels of gastrin and a mouse model of hepatic metastasis). As with Ggly, CTFP treatment stimulated colonic proliferation in GASKO mice compared to control. CTFP also significantly increased apoptosis in the gastric mucosa of male GASKO mice. CTFP did not appear to effect xenograft growth or the incidence of liver metastases. This is the first demonstration that CTFP has specific biological activity in vivo in the colon and stomach.  相似文献   

7.
Hypergastrinemia increases gastric epithelial susceptibility to apoptosis   总被引:2,自引:0,他引:2  
Plasma concentrations of the hormone gastrin are elevated by Helicobacter pylori infection and by gastric atrophy. It has previously been proposed that gastrin acts as a cofactor during gastric carcinogenesis and hypergastrinemic transgenic INS-GAS mice are prone to developing gastric adenocarcinoma, particularly following H. pylori infection. We hypothesised that the increased risk of carcinogenesis in these animals may partly result from altered susceptibility of gastric epithelial cells to undergo apoptosis. Gastric corpus apoptosis was significantly increased 48 h after 12Gy gamma-radiation in mice rendered hypergastrinemic by transgenic (INS-GAS) or pharmacological (omeprazole treatment of FVB/N mice) methods and in both cases the effects were inhibited by the CCK-2 receptor antagonist YM022. However, no alteration in susceptibility to gamma-radiation-induced gastric epithelial apoptosis was observed in mice overexpressing progastrin or glycine-extended gastrin. Apoptosis was also significantly increased in gastric corpus biopsies obtained from H. pylori-infected humans with moderate degrees of hypergastrinemia. We conclude that hypergastrinemia specifically renders cells within the gastric corpus epithelium more susceptible to induction of apoptosis by radiation or H. pylori. Altered susceptibility to apoptosis may therefore be one factor predisposing to gastric carcinogenesis in INS-GAS mice and similar mechanisms may also be involved in humans.  相似文献   

8.
Helicobacter pylori infection is a causal factor of gastric cancer (which is associated with low gastric acid secretion) or duodenal ulcer (high acid secretion). Parietal cells and ECL cells in the stomach are controlled by gastrin, which plays a crucial role in the regulation of acid secretion. The present study was undertaken to identify a possible role of gastrin in determining the different responses of the parietal cells and ECL cells to chronic H. pylori infection. Wild-type (C57BL/6J) gastrin(+/+) mice and gastrin(-/-) knockout mice, generated through targeted gene disruption and backcrossed eight times to C57BL/6J, were infected with H. pylori for 9 months. The acid output was measured 4 h after pylorus ligation (known to cause vagal excitation). The gastric mucosa was examined by immunocytochemistry with antisera to alpha-subunit of H+/K(+)-ATPase for the parietal cells, and to histamine and vesicle monoamine transporter-2 for the ECL cells, and by quantitative electron microscopy. In infected gastrin(+/+) mice, the acid output and the percentage of secreting parietal cells (freely fed state) were 20-30% of the values in uninfected controls, while the density and ultrastructure of parietal cells were normal. The infected mice had hypergastrinemia and displayed hypertrophy and hyperplasia of ECL cells. Although uninfected gastrin(-/-) mice had lower the acid output than uninfected gastrin(+/+) mice, there was a higher acid output (approximately 3 times) in infected gastrin(-/-) mice than their uninfected homologues. The numbers of parietal cells and ECL cells remained unchanged in infected gastrin(-/-) mice. In conclusion, chronic H. pylori infection results to impaired parietal-cell function (acid hyposecretion), hypergastrinemia and hyperplasia of ECL cells in wild-type mice but leads to vagally induced hypersecretion in gastrin-deficient mice.  相似文献   

9.
Kovac S  Xiao L  Shulkes A  Patel O  Baldwin GS 《FEBS letters》2010,584(21):4413-4418
The involvement of the gastrointestinal hormone gastrin in the development of gastrointestinal cancer is highly controversial. Here we demonstrate a positive-feedback loop whereby gastrin, acting via the CCK2 receptor, increases its own expression. Such an autocrine loop has not previously been reported for any other gastrointestinal hormone. Gastrin promoter activation was dependent on the MAP kinase pathway and did not involve Sp1 binding sites or epidermal growth factor receptor transactivation. As the treatment of gastrointestinal cancer cells with amidated gastrin led to increased expression of non-amidated gastrins, the positive-feedback loop may contribute to the sustained increase in circulating gastrins observed in colorectal cancer patients.  相似文献   

10.
Transferrin Receptor 2 (TfR2) is a key molecule involved in the regulation of iron homeostasis. Mutations in TfR2 lead to type 3 hemochromatosis in humans. We have developed mice with a targeted deletion of TfR2. The Cre-recombinase:loxP system used to create the mice allows both full deletion and tissue-specific deletion of TfR2. The development of these mice will provide new models for type 3 hemochromatosis and assist in determining the role of TfR2 in iron metabolism.  相似文献   

11.
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.  相似文献   

12.
The chromogranins are soluble, acidic, proteins which are frequently co-stored in neuroendocrine cells with biogenic amines. In the gastric mucosa chromogranin A is localized to enterochromaffin-like cells which are the main source of histamine, and which are known to be regulated by circulating gastrin. We have used radioimmunoassays selective for the extreme C-terminal regions of chromogranin A and B to examine changes in gastric extracts following modulation of the gastric luminal contents. There were decreased concentrations of the two chromogranins in tissue extracts of rats after food withdrawal (which lowered plasma gastrin concentrations); inhibition of acid secretion with the H+/K(+)-ATPase inhibitor, omeprazole (which increased plasma gastrin concentrations) raised chromogranin A and B concentrations both in fasted rats, and in rats fed ad libitum. There was no evidence for altered patterns of posttranslational cleavage of chromogranin A or B with these treatments. The data indicate that chromogranin A and B concentrations in gastric ECL cells are regulated in parallel with histamine production, and are consistent with the idea that the chromogranins play a role in the formation and stabilization of the secretory granule involved in amine storage.  相似文献   

13.
We evaluated whether nalmefene, an orally administered opiate-receptor antagonist, would inhibit gastric acid secretion in response to a meal in healthy humans. On separate days either 50 mg nalmefene or a placebo tablet was administered by mouth 90 min before a blenderized steak meal was infused into the stomach through a nasogastric tube. Compared to placebo, nalmefene inhibited meal-stimulated acid secretion in each of 6 subjects studied (P less than 0.05). During the second and third hours after the meal, nalmefene inhibited mean acid secretion by 16%. Nalmefene also resulted in significantly higher meal-stimulated serum gastrin concentrations than placebo (P less than 0.05) even though intragastric pH was kept constant at 5.0 in both experiments. These studies indicate that an orally administered opiate-receptor antagonist can inhibit gastric acid secretion in response to a meal in humans, yet increase meal-stimulated serum gastrin concentrations.  相似文献   

14.
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe(-/-) mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe(-/-) and wild-type mice by intratracheal instillation of 20 μg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe(-/-) mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe(-/-) and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis.  相似文献   

15.
The neurohumoral pathways mediating intracisternal TRH-induced stimulation of gastric acid secretion were investigated. In urethane-anesthetized rats, with gastric and intrajugular cannulas, TRH or the analog [N-Val2]-TRH (1 microgram) injected intracisternally increased gastric acid output for 90 min. Serum gastrin levels were not elevated significantly. Under these conditions the TRH analog, unlike TRH, was devoid of thyrotropin-releasing activity as measured by serum TSH levels. In pylorus-ligated rats, gastrin values were not modified 2 h after peptide injection whereas gastric acid output was enhanced. TRH (0.1-1 micrograms) stimulated vagal efferent discharge, recorded from a multifiber preparation of the cervical vagus in urethane-anesthetized rats and the response was dose-dependent. The time course of vagal activation was well correlated with the time profile of gastric stimulation measured every 2 min. These results demonstrated that gastric acid secretory stimulation elicited by intracisternal TRH is not related to changes in circulating levels of gastrin or TSH but is mediated by the activation of efferent vagal pathways that stimulated parietal cell secretion.  相似文献   

16.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

17.
Results of several experiments have suggested that histamine-2 receptors play an inhibitory role in regulating gastrin release. We evaluated this prospectively in healthy human beings by infusing intravenously either histamine (0.33 μg/kg/min) or cimetidine (3.33 mg/min) during a continuous 3-h intragastric infusion of a 3% mixed amino acid meal, a potent stimulus of gastrin release. In order to be certain that effects of histamine or cimetidine on gastrin release were independent of their known effects on gastric acid secretion, intragastric pH was maintained at 5.0 by in vivo intragastric titration with sodium bicarbonate or hydrochloric acid. Although histamine and cimetidine had significant effects on gastric acid secretion, neither significantly affected the rises in serum gastrin concentrations during intragastric amino acid infusion. For example, mean gastrin rises above basal concentrations were 39 ± 9 pg/ml on the control day, 39 ± 9 pg/ml on the histamine day and 44 ± 11 pg/ml on the cimetidine day (P > 0.05). Thus, blockade or stimulation of H2-receptors at the doses tested had no effect on gastrin release in response to an amino acid meal in humans when intragastric pH was maintained at 5.0.  相似文献   

18.
The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (-/-) mice deficient in AQP4 protein. -/- Mice had grossly normal growth and appearance and showed no differences in gastric morphology by light microscopy. Gastric acid secretion was measured in anesthetized mice in which the stomach was luminally perfused (0. 3 ml/min) with 0.9% NaCl containing [(14)C]polyethylene glycol ([(14)C]PEG) as a volume marker. Collected effluent was assayed for titratable acid content and [(14)C]PEG radioactivity. After 45-min baseline perfusion, acid secretion was stimulated by pentagastrin (200 microg. kg(-1). h(-1) iv) for 1 h or histamine (0.23 mg/kg iv) + intraluminal carbachol (20 mg/l). Baseline gastric acid secretion (means +/- SE, n = 25) was 0.06 +/- 0.03 and 0.03 +/- 0.02 microeq/15 min in +/+ and -/- mice, respectively. Pentagastrin-stimulated acid secretion was 0.59 +/- 0.14 and 0.70 +/- 0.15 microeq/15 min in +/+ and -/- mice, respectively. Histamine plus carbachol-stimulated acid secretion was 7.0 +/- 1.9 and 8.0 +/- 1.8 microeq/15 min in +/+ and -/- mice, respectively. In addition, AQP4 deletion did not affect gastric fluid secretion, gastric pH, or fasting serum gastrin concentrations. These results provide direct evidence against a role of AQP4 in gastric acid secretion.  相似文献   

19.
Gastrin serum levels after acidification of the second portion of the duodenum were studied, in dogs and humans, while simultaneously measuring secretin levels and gastric acid secretion. After duodenal acidification in dogs, a 50% inhibition of gastric acid secretion with parallel 100% increases in the serum secretin levels was noted whereas gastrin serum levels did not change (after duodenal acidification). In humans, a 25% inhibition of gastric acid secretion with parallel 50% (not significative) increases in the secretin serum levels was noted. In the entire group gastrin levels did not change, but in 35.2% of the subjects a little increment without statistical significance was noted. It is concluded that the inhibition mechanism of gastric acid secretion after duodenal acidification is more important in dog than in man, and that, probably, gastrin does not play an important role in this mechanism.  相似文献   

20.
BACKGROUND: Several studies have shown a link between gastrin and gastric cancer, both in humans and animals, especially infected with Helicobacter pylori (H. pylori). However, the exact role of hypergastrinemia in gastric carcinogenesis remains still undetermined. The aim of the present study was to evaluate the interaction between gastrin, cyclooxygenase-2 (COX-2), hepatocyte growth factor (HGF) and apoptosis-related proteins (Bax, Bcl-2, caspase-3, survivin) in cultured gastric epithelial cancer cells. MATERIAL AND METHODS: In the present study, gastric cultured cancer cells (KATO III cells) were exposed to increasing concentrations of gastrin (1-1000 nM). Cells incubated with culture medium alone, without added gastrin, served as controls. Using RT-PCR and Western blot, we examined the mRNA and protein expression for COX-2, HGF and apoptosis-related proteins (Bax, Bcl-2, caspase-3 and survivin). In addition, the gene expression of gastrin and gastrin receptor (CCK-2) as well as the release of gastrin in culture medium in the unstimulated cells were examined by RT-PCR and RIA, respectively. The apoptosis rate in cells was measured by flow cytometric analysis. RESULTS: The present study shows that the gastric cultured epithelial cells exhibit the expression of gastrin and CCK-2 receptors and release of gastrin into the culture medium. The epithelial gastric cancer cells incubated with gastrin showed a concentration-dependent increase of COX-2 and HGF expression. Although no significant changes in apoptosis rate were observed, the exposure of these cells was associated with a dose-dependent increase in the expression of antiapoptotic proteins Bcl-2 and survivin. CONCLUSIONS: This study demonstrates that 1) gastrin stimulates the gene and protein expression of COX-2 and HGF in human cultured gastric cancer cells and 2) gastrin shows antiapoptotic activity through the upregulation of Bcl-2 and survivin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号