首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The embryonic development of the grasshopper's Medial Giant Interneuron (MGI) was examined by injecting the cell with the fluorescent dye Lucifer Yellow at a series of stages in its growth. Particular attention was given to the way in which this neuron constructs its stereotyped dendritic branching pattern. The MGI's dendrites originate as secondary processes which sprout at characteristic points along the neurite after the primary growth cone has passed. These processes then arborize to form a miniature version of their adult branching pattern before the end of embryonic life. While growing, the dendritic branches are covered with a radiant profusion of filopodia; however, these filopodia are ephemeral structures and disappear once the cell matures. By contrast there is no significant reduction in either the number or the spatial extent of the actual dendrites at any embryonic stage. This implies that the stereotyped branching pattern of the mature MGI is primarily determined by a precise pattern of initial growth, and that secondary pruning of branches does not play an important role in shaping the final form of this cell. The coordinate ingrowth of the first cercal sensory axons was examined by cobalt filling the embryonic nerve, and the means by which these sensory axons make their initial contacts with the MGI's dendrites is herein discussed. The following paper considers the degree to which this sensory innervation regulates dendritic growth and branching.  相似文献   

2.
Although neuronal axons and dendrites with their associated filopodia and spines exhibit a profound cell polarity, the mechanism by which they develop is largely unknown. Here, we demonstrate that specific palmitoylated protein motifs, characterized by two adjacent cysteines and nearby basic residues, are sufficient to induce filopodial extensions in heterologous cells and to increase the number of filopodia and the branching of dendrites and axons in neurons. Such motifs are present at the N-terminus of GAP-43 and the C-terminus of paralemmin, two neuronal proteins implicated in cytoskeletal organization and filopodial outgrowth. Filopodia induction is blocked by mutations of the palmitoylated sites or by treatment with 2-bromopalmitate, an agent that inhibits protein palmitoylation. Moreover, overexpression of a constitutively active form of ARF6, a GTPase that regulates membrane cycling and dendritic branching reversed the effects of the acylated protein motifs. Filopodia induction by the specific palmitoylated motifs was also reduced upon overexpression of a dominant negative form of the GTPase cdc42. These results demonstrate that select dually lipidated protein motifs trigger changes in the development and growth of neuronal processes.  相似文献   

3.
Light and electronmicroscopic studies have been made on retinal structures in the lamprey labeled by horseradish peroxidase injected into the peripheral end of the cut optic nerve or to the midbrain tectum. On total retinal preparations, labeled axons were revealed together with dendrites and ganglionic cell bodies, as well as branching (presumably retinopetal) fibers, fine endings of which come closely to the labeled dendrites of the ganglionic cells. Electron microscopic data indicate that the labeled terminations of afferent fibers from synapses with both labeled and unlabeled dendrites, as well as with unlabeled neuronal bodies. It is concluded that centrifugal fibers in lamprey retina form contacts with the bodies and dendrites of the amacrine cells and dendrites of the ganglionic cells. Results of intracellular registration of responses of various retinal elements to the electrical stimulation of the optic nerve support this conclusion.  相似文献   

4.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

5.
An electronic analog of a neuron operating in real time is presented. The sequence of signal formation in the analog follows that of processes occurring at the synapse, postsynaptic membrane, and soma of the cell. Concepts of the synapse as a "key" and of the postsynaptic membrane as ionic channel with conductance changing under the action of transmitter and intracellular potential having been put into effect in the physical model, the neuronal analog could be set up along the same lines as a spike generator in which operation of the synaptic apparatus and the structure of neuronal dendrites could be reproduced. Spike train transformation processes typical of different types of neurons (such as motoneurons and Renshaw cells) were modeled by changing the parameters of membrane resistance and capacitance. Findings from research on simple neuronal networks have made it possible to use the analogs suggested to study the principles governing organization of neuronal structures as well as mechanisms underlying neuronal interaction, particularly those of the motor control system.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 379–389, May–June, 1989.  相似文献   

6.
Synaptic connectivity and neuronal morphology: two sides of the same coin   总被引:6,自引:0,他引:6  
Chklovskii DB 《Neuron》2004,43(5):609-617
Neurons often possess elaborate axonal and dendritic arbors. Why do these arbors exist and what determines their form and dimensions? To answer these questions, I consider the wiring up of a large highly interconnected neuronal network, such as the cortical column. Implementation of such a network in the allotted volume requires all the salient features of neuronal morphology: the existence of branching dendrites and axons and the presence of dendritic spines. Therefore, the requirement of high interconnectivity is, in itself, sufficient to account for the existence of these features. Moreover, the actual lengths of axons and dendrites are close to the smallest possible length for a given interconnectivity, arguing that high interconnectivity is essential for cortical function.  相似文献   

7.
Cell structures and nerve fiber architectonics were studied in the neonatal mouse hippocampus in vitro. Bundles of nerve fibers (alvear tract, perforant path, axons of mossy cells) and the formed granular layer of the dentate fascia were discovered in transverse sections through the hippocampus cultured for 2 or 3 weeks. It is suggested that differentiation of cell structures continues in the explants as a result of postnatal histogenetic processes and definitive growth of nerve fibers takes place. In this way it is possible to simulate and conduct an electrophysiological analysis of the interneuronal connections characteristic of the hippocampus and formed during its postnatal development in vitro.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 384–390, July–August, 1976.  相似文献   

8.
The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.  相似文献   

9.
Summary Application of two methods for the selective staining of neurons, Golgi impregnation and intracellular marking with Procion Yellow, has revealed the anatomical arrangements of the horizontal cells in the carp retina. There are two basic horizontal-cell types, those with axons and these without. The former can be subdivided into three groups on the basis of the pattern of branching of the dendrites. These three structural groups are also functionally distinct, as shown by the electrical recordings made during Procion-Yellow injection. The axons of these three types of cell project into the proximal part of the inner nuclear layer, where they expand to form morphologically indistinguishable terminals. Fine horizontal processes leave the surfaces of these axon terminals. The functional behavior of a terminal resembles that of the associated soma. The horizontal cells lacking axons vary in morphological appearance, but they are similar functionally.This work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

10.
Neurons in the anterior ventral (AV) thalamic nucleus of human adults were impregnated by Golgi-Kopsch impregnation method. Results showed that at least three morphological types of neurons could be recognized in the human AV thalamic nucleus. Type I neurons were medium to large with rich dendritic arborization. Both tufted and radiating dendritic branching patterns were seen in almost every neuron of this type. Only the initial axonal segments of these cells were impregnated suggesting that these axons were heavily myelinated. Type II neurons were medium in size with poor to moderate dendritic arborization. Many of these cells possess a few dendritic grape-like appendages. Long segments (up to 300 μm) of their axons were impregnated suggesting that these axons were either unmyelinated or thinly myelinated. These axons change their direction and form loops very often. No local branches were seen for these axons suggesting that they could be projection axons. Type III neurons were small with only one or two dendrites with poor arborization. No axons for these cells were seen in this study. The three neuronal types in the human AV thalamic nucleus were compared with neuronal types already described in other thalamic nuclei of human and non-human species. The results of this study might provide a morphological basis for further electrophysiological and / or pathological studies.  相似文献   

11.
Using the method of the anterograde dextran tetramethylrhodamin transport, there is obtained the topographic picture of branching of inferior cervical nerve axons on fibers of the dorsal longitudinal muscle in Lymnaea stagnalis (L.). Using the retrograde staining, the neuronal bodies sending their processes into this nerve are marked. Manifestations of asymmetry in distribution of neurons stained through the right and left nerves are described. The electron microscopic studies have shown that the main number of the inferior cervical nerve axons is represented by thin fibers presumably belonging to the sensory cells. A part of the nerve fibers and their endings show imunoreactivity to serotonin and acetylcholine. The serotoninergic fibers predominate quantitatively over the cholinergic ones and account for a half of the fibers stained with dextran. A possible functional role of the serotoninergic and cholinergic innervation of the dorsal longitudinal muscle in Lymnaea stagnalis is discussed.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 40, No. 6, 2004, pp. 569–578.  相似文献   

12.
Neurons have highly polarized arrangements of microtubules, but it is incompletely understood how microtubule polarity is controlled in either axons or dendrites. To explore whether microtubule nucleation by γ-tubulin might contribute to polarity, we analyzed neuronal microtubules in Drosophila containing gain- or loss-of-function alleles of γ-tubulin. Both increased and decreased activity of γ-tubulin, the core microtubule nucleation protein, altered microtubule polarity in axons and dendrites, suggesting a close link between regulation of nucleation and polarity. To test whether nucleation might locally regulate polarity in axons and dendrites, we examined the distribution of γ-tubulin. Consistent with local nucleation, tagged and endogenous γ-tubulins were found in specific positions in dendrites and axons. Because the Golgi complex can house nucleation sites, we explored whether microtubule nucleation might occur at dendritic Golgi outposts. However, distinct Golgi outposts were not present in all dendrites that required regulated nucleation for polarity. Moreover, when we dragged the Golgi out of dendrites with an activated kinesin, γ-tubulin remained in dendrites. We conclude that regulated microtubule nucleation controls neuronal microtubule polarity but that the Golgi complex is not directly involved in housing nucleation sites.  相似文献   

13.
Translation of mRNA in axons and dendrites enables a rapid supply of proteins to specific sites of localization within the neuron. Distinct mRNA-containing cargoes, including granules and mitochondrial mRNA, are transported within neuronal projections. The distributions of these cargoes appear to change during neuronal development, but details on the dynamics of mRNA transport during these transitions remain to be elucidated. For this study, we have developed imaging and image processing methods to quantify several transport parameters that can define the dynamics of RNA transport and localization. Using these methods, we characterized the transport of mitochondrial and non-mitochondrial mRNA in differentiated axons and dendrites of cultured hippocampal neurons varying in developmental maturity. Our results suggest differences in the transport profiles of mitochondrial and non-mitochondrial mRNA, and differences in transport parameters at different time points, and between axons and dendrites. Furthermore, within the non-mitochondrial mRNA pool, we observed two distinct populations that differed in their fluorescence intensity and velocity. The net axonal velocity of the brighter pool was highest at day 7 (0.002±0.001 µm/s, mean ± SEM), raising the possibility of a presynaptic requirement for mRNA during early stages of synapse formation. In contrast, the net dendritic velocity of the brighter pool increased steadily as neurons matured, with a significant difference between day 12 (0.0013±0.0006 µm/s ) and day 4 (−0.003±0.001 µm/s) suggesting a postsynaptic role for mRNAs in more mature neurons. The dim population showed similar trends, though velocities were two orders of magnitude higher than of the bright particles. This study provides a baseline for further studies on mRNA transport, and has important implications for the regulation of neuronal plasticity during neuronal development and in response to neuronal injury.  相似文献   

14.
Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal''s laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron''s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron''s computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the “TREES toolbox,” which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks.  相似文献   

15.
Current models of embryological development focus on intracellular processes such as gene expression and protein networks, rather than on the complex relationship between subcellular processes and the collective cellular organization these processes support. We have explored this collective behavior in the context of neocortical development, by modeling the expansion of a small number of progenitor cells into a laminated cortex with layer and cell type specific projections. The developmental process is steered by a formal language analogous to genomic instructions, and takes place in a physically realistic three-dimensional environment. A common genome inserted into individual cells control their individual behaviors, and thereby gives rise to collective developmental sequences in a biologically plausible manner. The simulation begins with a single progenitor cell containing the artificial genome. This progenitor then gives rise through a lineage of offspring to distinct populations of neuronal precursors that migrate to form the cortical laminae. The precursors differentiate by extending dendrites and axons, which reproduce the experimentally determined branching patterns of a number of different neuronal cell types observed in the cat visual cortex. This result is the first comprehensive demonstration of the principles of self-construction whereby the cortical architecture develops. In addition, our model makes several testable predictions concerning cell migration and branching mechanisms.  相似文献   

16.
Precise wiring patterns of axons are among the remarkable features of neuronal circuit formation, and establishment of the proper neuronal network requires control of outgrowth, branching, and guidance of axons. R-Ras is a Ras-family small GTPase that has essential roles in multiple phases of axonal development. We recently identified afadin, an F-actin–binding protein, as an effector of R-Ras mediating axon branching through F-actin reorganization. Afadin comprises two isoforms—l-afadin, having the F-actin–binding domain, and s-afadin, lacking the F-actin–binding domain. Compared with l-afadin, s-afadin, the short splicing variant of l-afadin, contains RA domains but lacks the F-actin–binding domain. Neurons express both isoforms; however, the function of s-afadin in brain remains unknown. Here we identify s-afadin as an endogenous inhibitor of cortical axon branching. In contrast to the abundant and constant expression of l-afadin throughout neuronal development, the expression of s-afadin is relatively low when cortical axons branch actively. Ectopic expression and knockdown of s-afadin suppress and promote branching, respectively. s-Afadin blocks the R-Ras–mediated membrane translocation of l-afadin and axon branching by inhibiting the binding of l-afadin to R-Ras. Thus s-afadin acts as a dominant-negative isoform in R-Ras-afadin–regulated axon branching.  相似文献   

17.
Grueber WB  Yang CH  Ye B  Jan YN 《Current biology : CB》2005,15(17):R730-R738
Neurons are highly polarized cells with some regions specified for information input--typically the dendrites--and others specialized for information output--the axons. By extending to a specific location and branching in a specific manner, the processes of neurons determine at a fundamental level how the nervous system is wired to produce behavior. Recent studies suggest that relatively small changes in neuronal morphology could conceivably contribute to striking behavioral distinctions between invertebrate species. We review recent data that begin to shed light on how neurons extend dendrites to their targets and acquire their particular branching morphologies, drawing primarily on data from genetic model organisms. We speculate about how and why the actions of these genes might facilitate the diversification of dendritic morphology.  相似文献   

18.

Background

Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood.

Methodology/Principal Findings

We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation.

Conclusions/Significance

Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of perceptual phenomena currently explained by lateral inhibition networks.  相似文献   

19.
Neural development and the organization of complex neuronal circuits involve a number of processes that require cell-cell interaction. During these processes, axons choose specific partners for synapse formation and dendrites elaborate arborizations by interacting with other dendrites. The cadherin superfamily is a group of cell surface receptors that is comprised of more than 100 members. The molecular structures and diversity within this family suggest that these molecules regulate the contacts or signalling between neurons in a variety of ways. In this review I discuss the roles of three subfamilies - classic cadherins, Flamingo/CELSRs and protocadherins - in the regulation of neuronal recognition and connectivity.  相似文献   

20.
The efficacy of excitation induced by iontophoretic application of excitatory amino acids to the soma or different parts of the dendritic tree has been compared in experiments performed on parietal cortex slices. Spike activity was recorded extracellularly from single nerve cells of layer V. In total, the responses of 125 neurons were analyzed. Upon application of glutamate and aspartate to the neuronal soma and the majority of dendrites, latencies of excitatory responses did not exceed 500 msec. In 18% of cases, neuronal responses to transmitter application to basal and apical dendrites had longer (2–3 sec) latencies. The maximum intensity of responses was observed when excitatory amino acids had been applied to the soma or proximal parts of dendrites. If applied at a distance of over 100 µm to basal and 300 µm to apical dendrites, glutamate and aspartate elicited cellular responses whose intensity was 2–3 times lower than that of the responses induced by application to the soma. The maximum distances at which somatic spike responses could be recorded were 350 µm and 800 µm for basal and apical dendrites, respectively. Different latencies of the responses to somatic and dendritic applications of excitatory amino acids in some neurons, as well as high efficacy of responses to stimulation of remote parts of dendritic tree, may indicate nonidentity of electrical properties of dendritic and somatic membranes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 6, pp. 437–446, November–December, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号