首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The EBV carrier state is almost general in men. The virus induces B lymphocyte proliferation in vitro, but this is counteracted in vivo by the immune response. Therefore, EBV-induced malignancies occur only when the immune response is impaired, e.g. in transplant recipients. The versatility of the viral gene expression strategy secures the consistent maintainance of the virus in healthy individuals. The viral proteins required for transformation render the cell immunogenic. Expression of the transforming genes leads to rejection, but these genes are not required for the maintenance of the viral genome. EBV is an important contributor for malignant transformation, even when it does not directly induce cell proliferation. Several mechanisms have been unravelled in EBV-associated tumors whereby the virus may modify the cellular phenotype and may influence the interaction of tumor cells with their microenvironment. The virus carrier state can lead to the evasion of apoptosis and can intensify the response to growth promoting signals, too.  相似文献   

3.
Epstein-Barr virus(EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that micro RNAs(mi RNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes mi RNAs for immune evasion. EBV encodes mi RNAs targeting both viral and host genes involved in the immune response. The mi RNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4~+ and CD8~+ T cell response of infected cells. These reports strongly indicate that EBV mi RNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host mi RNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated mi RNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment.During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of mi RNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.  相似文献   

4.
5.
Epstein–Barr virus (EBV) infection is detected in various epithelial malignancies, such as nasopharyngeal carcinoma (NPC) and gastric cancer (GC). EBV comprises some unique molecular features and encodes viral genes and microRNAs (miRNAs) by its own DNA sequence. EBV genes are required to maintain latency and contribute to oncogenic property. miRNAs encoded by EBV have been shown to contribute to initiation and progression of EBV‐related malignancies. By a number of genomic profiling studies, some EBV miRNAs were confirmed to be highly expressed in EBV‐associated gastric cancer (EBVaGC) samples and cell lines. The majority host targets of the EBV miRNAs are important for promoting cell growth and inhibiting apoptosis, facilitating cell survival and immune evasion. However, the integrated molecular mechanisms related to EBV miRNAs remain to be investigated. In this review, we summarized the crucial role of EBV miRNAs in epithelial malignancies, especially in EBVaGC. Collectively, EBV miRNAs play a significant role in the viral and host gene regulation network. Understanding the comprehensive potential targets and relevant functions of EBV miRNAs in gastric carcinogenesis might provide better clinical translation.  相似文献   

6.
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development.  相似文献   

7.
The Epstein-Barr virus (EBV) is a member of the herpes family of viruses and is very common in humans. EBV is most often associated with infectious mononucleosis. However, it is estimated that 1% of tumors including lymphoproliferative, epithelial and mesenchymal are linked to EBV infection. EBV has a tropism for certain epithelial cells, lymphocytes and myocytes. Like other herpesviruses, EBV has both lytic and latent phases of infection. In the latent form, EBV-encoded genes ensure the survival of the viral genome, allowing it to circumvent the host's immune surveillance by limited expression of viral proteins and carries with it the risk of neoplastic transformation. Cytologists are likely to encounter EBV-associated malignancies in cytology material but unlike other herpesviruses, EBV does not evoke a viral cytopathic effect. The manifestation of EBV-related tumors is also often variable depending upon the patient's immune status. Therefore, knowledge of the patient's EBV status and immune competence (e.g. HIV-infection or transplant-related immunosuppression) combined with the cytomorphology and results of ancillary studies are often all required to make a diagnosis of EBV-associated malignancy. This review discusses the unique cytomorphology and ancillary studies required to diagnose EBV-related neoplasms.  相似文献   

8.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis.Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions.The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program.In this short review we touch upon aspects which are the subject of our present work.We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells.The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.  相似文献   

9.
Epstein-Barr virus (EBV) is implicated in the development of a number of human malignancies including several subtypes of non-Hodgkin lymphoma (NHL) [G. Pallesen, S.J. Hamilton-Dutoit, X. Zhou, The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin's disease: two new developments in the EBV Field, Adv. Cancer Res. 62 (1993) 179-239]. Lymphoproliferative disease and NHL occurring in severely immunosuppressed individuals almost always involve EBV and have been extensively studied and modeled in vitro. EBV has also been causally associated with some cases of NHL occurring in otherwise immunocompetent individuals. However, a direct role for EBV in the pathogenesis of neoplasms developing in the presence of an otherwise competent immune system has not been established. We investigated potential interactions between dithiocarbamates (DTC), an important class of thiono-sulfur compounds, and EBV leading to immortalization of human B lymphocytes and evasion of cell-mediated immune response in culture. Primary lymphocyte cultures employing wild-type and recombinant EBV mutants were used to assess the respective roles of DTC and viral genes in lymphocyte transformation and survival. Pretreatment of EBV-infected human B lymphocytes with DTC directly enhanced transformation in the absence of T cells (5 nM) and independently increased survival of transformed cells in the presence of competent autologous T cells (10 nM). Both DTC-induced transformation and immortalization of EBV-infected B lymphocytes were dependent on the expression of viral IL-10. These results provide a biological basis for studying collaborations between chemical and virus that alter lymphocyte biology, and provide a rationale for further molecular epidemiology studies to better understand the potential influence of these interactions on the development of NHL and perhaps other viral-associated malignancies.  相似文献   

10.
Epstein-Barr virus (EBV) is a ubiquitous virus with infections commonly resulting in a latency carrier state. Although the exact role of EBV in cancer pathogenesis remains not entirely clear, it is highly probable that it causes several lymphoid and epithelial malignancies, such as Hodgkin’s lymphoma, NK-T cell lymphoma, Burkitt’s lymphoma, and nasopharyngeal carcinoma. EBV-associated malignancies are associated with a latent form of infection, and several of these EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins. Studies have shown that EBV displays distinct patterns of viral latent gene expression in these lymphoid and epithelial tumors. The constant expression of latent membrane protein 2A (LMP2A) at the RNA level in both primary and metastatic tumors suggests that this protein might be a driving factor in the tumorigenesis of EBV-associated malignancies. LMP2A may cooperate with the aberrant host genome, and thereby contribute to malignant transformation by intervening in signaling pathways at multiple points, especially in the cell cycle and apoptotic pathway. This review summarizes the role of EBV-encoded LMP2A in EBV-associated viral latency and cancers. We will focus our discussions on the molecular interactions of each of the conserved motifs in LMP2A, and their involvement in various signaling pathways, namely the B-cell receptor blockade mechanism, the ubiquitin-mediated (Notch and Wnt) pathways, and the MAPK, PI3-K/Akt, NK-κB and STAT pathways, which can provide us with important insights into the roles of LMP2A in the EBV-associated latency state and various malignancies.  相似文献   

11.
12.
The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A''s function and contribution to viral pathogenesis.  相似文献   

13.
Epstein-Barr Virus (EBV) is an ubiquitous human herpesvirus which can lead to infectious mononucleosis and different cancers. In immunocompromised individuals, this virus is a major cause for morbidity and mortality. Transplant patients who did not encounter EBV prior to immunosuppression frequently develop EBV-associated malignancies, but a prophylactic EBV vaccination might reduce this risk considerably. Virus-like particles (VLPs) mimic the structure of the parental virus but lack the viral genome. Therefore, VLPs are considered safe and efficient vaccine candidates. We engineered a dedicated producer cell line for EBV-derived VLPs. This cell line contains a genetically modified EBV genome which is devoid of all potential viral oncogenes but provides viral proteins essential for the assembly and release of VLPs via the endosomal sorting complex required for transport (ESCRT). Human B cells readily take up EBV-based VLPs and present viral epitopes in association with HLA molecules to T cells. Consequently, EBV-based VLPs are highly immunogenic and elicit humoral and strong CD8+ and CD4+ T cell responses in vitro and in a preclinical murine model in vivo. Our findings suggest that VLP formulations might be attractive candidates to develop a safe and effective polyvalent vaccine against EBV.  相似文献   

14.
Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4+ and CD8+ T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.
  相似文献   

15.
Several DNA viruses including Human Papillomavirus (HPV), Epstein-Barr virus (EBV), and Human cytomegalovirus (HCMV) are mechanistically associated with the development of human cancers (HPV, EBV) and/or modulation of the immune system (HCMV). Moreover, a number of distinct mechanisms have been described regarding the modulation of tumor cell response to ionizing radiation and evasion from the host immune system by viral factors. There is further accumulating interest in the treatment with immune-modulatory therapies such as immune checkpoint inhibitors for malignancies with a viral etiology. Also, patients with HPV-positive tumors have a significantly improved prognosis that is attributable to increased intrinsic radiation sensitivity and may also arise from modulation of a cytotoxic T cell response in the tumor microenvironment (TME). In this review, we will highlight recent advances in the understanding of the biological basis of radiation response mediated by viral pathogenic factors and evasion from and modulation of the immune system by viruses.  相似文献   

16.
The Epstein-Barr virus (EBV) is a human herpesvirus that is usually carried lifelong as an asymptomatic infection. EBV is the causative agent of infectious mononucleosis and has been linked to the development of several malignant tumours, including B-cell neoplasms such as Burkitt's lymphoma and Hodgkin's disease, certain forms of T-cell lymphoma, and some epithelial tumours, such as undifferentiated nasopharyngeal carcinoma and a proportion of gastric cancers. All these tumours are characterised by the presence of multiple extrachromosomal copies of the circular viral genome in the tumour cells and the expression of EBV-encoded latent genes, which appear to contribute to the malignant phenotype. An increasing understanding of the function of EBV latent genes and of the nature of the immune response to the virus is providing exciting new possibilities for the treatment of EBV-associated malignancies. For example, adoptive transfer of virus-specific cytotoxic T lymphocytes has already been of value in the treatment of EBV-positive B-cell lymphomas arising in post-transplant patients, and this approach is currently being investigated in other EBV-associated tumours. In addition, gene therapy offers the opportunity to deliver agents that might directly interfere with the function of specific EBV genes. This review summarises the role of EBV in malignancy. In particular, it focuses on the latent proteins as a basis for understanding how EBV might contribute to the process of transformation. Strategies to target EBV in tumours, potentially providing alternative therapeutic approaches, are also discussed.  相似文献   

17.
Most Epstein-Barr virus (EBV)-positive tumor cells contain one of the latent forms of viral infection. The role of lytic viral gene expression in EBV-associated malignancies is unknown. Here we show that EBV mutants that cannot undergo lytic viral replication are defective in promoting EBV-mediated lymphoproliferative disease (LPD). Early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants with a deletion of either viral immediate-early gene grew similarly to wild-type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated into SCID mice. Restoration of lytic EBV gene expression enhanced growth in SCID mice. Acyclovir, which prevents lytic viral replication but not expression of early lytic viral genes, did not inhibit the growth of WT LCLs in SCID mice. Early-passage LCLs derived from the lytic-defective viruses had substantially decreased expression of the cytokine interleukin-6 (IL-6), and restoration of lytic gene expression reversed this defect. Expression of cellular IL-10 and viral IL-10 was also diminished in lytic-defective LCLs. These results suggest that lytic EBV gene expression contributes to EBV-associated lymphoproliferative disease, potentially through induction of paracrine B-cell growth factors.  相似文献   

18.
The Epstein-Barr virus (EBV) is a gamma-herpes virus which establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignacies efficiently and remain free of EBV+ tumors. Though EBV is controlled by a potent immune response, this virus uses latency to persist in vivo. This review summarizes work which has been done to characterize T cell responses to EBV. The CD8 T cell responses are rather well characterized and have been shown by several groups to be highly focused towards early lytic antigens. Much less is known about CD4 T cell epitopes, due to the small size of the CD4 compartment. However, recent data indicate a control of lytic and latent cycles of EBV by specific CD4+ T cells. A clear understanding of the T cell response to EBV is important with a view to developing immunotherapies for the virus and its related malignancies.  相似文献   

19.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号