首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pineal gland on kidney-adrenal axis have been studied in male rats. Rats were pinealectomized and exposed to a photoperiod of 12 h light: 12 h dark. Plasma renin activity (PRA), corticosterone and corticotropin (ACTH) levels were measured at 10, 20 and 35 days postpinealectomy. Pinealectomy increased corticosterone and ACTH levels and decreased PRA in all age groups. A significant negative correlation was found between corticosterone and PRA, which suggest that changes in PRA were due to changes in circulating corticosterone, via feedback mechanism on renin secretion. On the other hand, melatonin administration prevents these effects of pinealectomy. It is suggested that the lack of this pineal indol is responsible for the pinealectomy-induced alterations in male rats.  相似文献   

2.
Summary We administered the diuretics furosemide and ethacrynic acid to conscious freshwater turtles to assess changes in renal function and plasma renin activity (PRA) in an animal which lacks a loop of Henle. Furosemide (2 and 5 mg/kg) produced no changes in blood pressure, hematocrit, plasma electrolytes, glomerular filtration rate (GFR), or PRA. Furosemide doubled urine volume while sodium excretion increased 20-fold and chloride and potassium excretion increased 12-fold (P<0.05 in each case). Net potassium secretion was observed. Ethacrynic acid (2 and 5 mg/kg) also produced no changes in blood pressure, hematocrit, plasma electrolytes, or PRA. At the lower dose GFR increased by 40% and urine volume nearly doubled (P<0.05 in each case). Sodium, chloride, and potassium excretion increased roughly 10-fold (P<0.05 in each case). At the higher dose, GFR increased by 80% and urine volume more than doubled (P<0.05 in each case). Sodium excretion rose 40-fold, chloride excretion rose 25-fold, and potassium excretion rose 10-fold (P<0.05 in each case). At both doses net potassium secretion occurred. The results demonstrate that both drugs inhibit tubular reabsorption in the turtle, acting primarily on distal segments of the nephron. The failure of either drug to alter PRA suggests that the turtle lacks a tubular mechanism for alterig renin release.Abbreviations GFR glomerular filtration rate - PRA plasma renin activity Supported by the University of Delaware Honors Program, American Heart Association of Delaware, NIH Biomedical Support Program, and USPHS #HL2808401  相似文献   

3.
Effects of blood viscosity on renin secretion.   总被引:1,自引:0,他引:1  
S Chien  K M Jan  S Simchon 《Biorheology》1990,27(3-4):589-597
The effects of alterations in blood and plasma viscosities on plasma renin activity (PRA) were studied in dogs anesthetized with pentobarbital. Blood viscosity was altered by changing the hematocrit (Hct) level by isovolemic exchange using packed red blood cells or plasma. Plasma viscosity was elevated by isovolemic exchange using Hct-matched blood with high molecular weight dextran (Dx, mean m.w. approximately 450,000) dissolved in plasma. Following control measurements of plasma and blood viscosities, plasma [Dx], PRA, Hct and hemodynamic functions, the dog was subjected to isovolemic exchange transfusions to either alter the Hct or administer the Dx. Various measurements were repeated 40-60 min after each exchange. Arterial pressure and renal blood flow remained relatively constant after exchanges; increases in plasma and blood viscosities were accompanied by a decrease in renal vascular hindrance (vasodilation) to keep the renal flow resistance at control level. PRA rose with increases in plasma [Dx] and viscosity, and the rise in PRA was best correlated with the decrease in renal hindrance. The changes in PRA and renal hindrance have the same regression line whether blood viscosity was altered by Hct variation or Dx administration. The results indicate that increases in viscosity cause a compensatory vasodilation of renal vessels to cause renin secretion.  相似文献   

4.
Previous experiments have indicated that arterial hypotension increases plasma oxytocin (OT) levels in rats and that OT infused intravenously causes an increase in plasma renin activity (PRA). The goal of the present study was to determine whether systemic administration of an OT receptor antagonist would attenuate the increase in PRA that is normally evoked by arterial hypotension in rats. In conscious male rats, intravenous injection of hydralazine or diazoxide produced sustained hypotension and evoked a significant increase in PRA, as expected. Intravenous infusion of an OT receptor antagonist did not alter the hypotension induced by hydralazine or diazoxide, but it did markedly blunt the induced increase in PRA. The OT receptor antagonist also blunted the hypotension-evoked increase in heart rate and plasma vasopressin levels, suggesting that the antagonist may have generally disrupted afferent signaling of hypotension. Thus hypotension-evoked OT secretion may contribute to cardiovascular homeostasis by enhancing baroreceptor signals that stimulate increases in renin secretion, vasopressin secretion, and heart rate during arterial hypotension in rats.  相似文献   

5.
The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.  相似文献   

6.
Arterial hypotension and hypovolemia are known to stimulate neurohypophysial secretion of oxytocin (OT) in rats, although the physiological function of OT under these circumstances is uncertain. We now report that OT infused intravenously into conscious rats at 125 ng x kg(-1) x h(-1), a dose selected to mimic plasma OT levels during hypotension or hypovolemia, increased plasma renin concentration and plasma renin activity by twofold. This effect was prevented by systemic pretreatment with an OT receptor antagonist [[1-(3-mercaptopropionic acid)-2-O-ethyl-D-Tyr-Thr(4)-Orn(8)]-OT]. The OT antagonist did not block renin secretion induced by systemic injection of the beta-adrenergic receptor agonist isoproterenol, indicating that the OT antagonist does not interfere nonselectively with renin release. Pretreatment of rats with the beta-adrenergic receptor antagonist nadolol also prevented OT-induced renin secretion. Similarly, nadolol injected during infusion of OT markedly reduced the elevated plasma renin levels. These observations raise the possibility that pituitary OT secretion during hypotension or hypovolemia in rats may serve to support blood pressure by enhancing activation of the renin-angiotensin system via a beta-adrenergic receptor-dependent mechanism.  相似文献   

7.
Hepatic angiotensinogen secretion is controlled by a complex pattern of physiological or pathophysiological mediators. Because plasma concentrations of angiotensinogen are close to the Michaelis-Menten constant, it was hypothesized that changes in circulating angiotensinogen affect the formation rate of ANG I and ANG II and, therefore, blood pressure. To further test this hypothesis, we injected purified rat angiotensinogen intravenously in Sprague-Dawley rats via the femoral vein and measured mean arterial blood pressure after arterial catheterization. In controls, mean arterial pressure was 131 +/- 2 mmHg before and after the injection of vehicle (sterile saline). The injection of 0.8, 1.2, and 2.9 mg/kg angiotensinogen caused a dose-dependent increase in mean arterial blood pressure of 8 +/- 0.4, 19.3 +/- 2.1, and 32 +/- 2.4 mmHg, respectively. In contrast, the injection of a purified rabbit anti-rat angiotensinogen antibody (1.4 mg/kg) resulted in a significant decrease in mean arterial pressure (-33 +/- 3.2 mmHg). Plasma angiotensinogen increased to 769 +/- 32, 953 +/- 42, and 1,289 +/- 79 pmol/ml, respectively, after substrate and decreased by 361 +/- 28 pmol/ml after antibody administration. Alterations in plasma angiotensinogen correlated well with changes in plasma renin activity. In summary, variations in circulating angiotensinogen can result in changes in blood pressure. In contrast to renin, which is known as a tonic regulator for the generation of ANG I, angiotensinogen may be a factor rather important for long-term control of the basal activity of the renin-angiotensin system.  相似文献   

8.
Effect of aldosterone on vascular angiotensin II receptors in the rat   总被引:3,自引:0,他引:3  
The effect of aldosterone on the density and affinity of binding sites for 125I-labelled angiotensin II was investigated in a particulate fraction prepared from the rat mesenteric arteriolar arcades. The infusion of aldosterone 6.6 micrograms/h intraperitoneally via Alzet osmotic minipumps for 6 d produced an increase in the density of binding sites for 125I-labelled angiotensin II without change in affinity. After sodium depletion, mesenteric artery angiotensin II receptors were down-regulated as expected. An increase in the number of binding sites could be found when aldosterone was infused into sodium-depleted rats with no change in the elevated plasma renin activity. The intraperitoneal infusion of angiotensin II (200 ng X kg-1 X min-1 for 6 d) simultaneously with aldosterone resulted in down-regulation of vascular angiotensin II receptors, whereas after intravenous angiotensin II infusion (at 60 ng X kg-1 X min-1) the density of angiotensin II binding sites rose with aldosterone infusion. Plasma renin activity (PRA) was reduced and plasma angiotensin II increased in a dose-dependent fashion after angiotensin II infusion. An aldosterone concentration of 3 ng/mL for 18 h produced an increase in the number of angiotensin II binding sites in rat mesenteric artery smooth muscle cells in culture. We conclude that increased plasma aldosterone may result in up-regulation of vascular angiotensin II receptors independently of changes in plasma renin activity, and may in certain physiological states effectively antagonize the down-regulating action of angiotensin II.  相似文献   

9.
Adrenomedullin and the renin-angiotensin-aldosterone system   总被引:1,自引:0,他引:1  
Despite its positive inotropic effects and its propensity to stimulate the renin system, adrenomedullin (AM) is hypotensive as a result of dramatic reductions in peripheral resistance. Furthermore, it does not appear to increase aldosterone secretion in spite of often vigorous activation of circulating renin. Hence, we postulate that AM may act as a functional antagonist to angiotensin II both in the vasculature and the adrenal glomerulosa. In the series of studies performed in sheep and human (normal and circulatory disorders) reviewed here, we report significant hemodynamic and hormonal actions of AM. These actions include consistent reduction of arterial pressure associated with rises in cardiac output and hence a dramatic reduction in calculated total peripheral resistance (CTPR). AM also consistently attenuates the pressor effects of angiotensin II (but not norepinephrine). Furthermore, AM consistently increases plasma renin activity (PRA) and induces either a reduction in plasma aldosterone, dissociation between aldosterone/PRA ratio, or attenuation of angiotensin II-induced aldosterone secretion. Thus, these results clearly point to a role for AM in pressure and volume homeostasis acting, at least in part, by interaction with the renin-angiotensin-aldosterone system (RAAS).  相似文献   

10.
The effect of moderate chronic hypobaric hypoxia (CHH) on the renin-angiotensin-aldosterone system has been analysed in male and female intact and castrated rats. The experimental animals were submitted to a simulated altitude of 4,400 m during ten weeks. Half of the experimental and half of the control animals were castrated at three weeks of age. Arterial pressure (AP) was measured once a week during the whole experimental period. Blood samples were obtained by decapitation at the end of the study. Red cell volume, plasma renin activity (PRA), plasma angiotensinogen (Ao) and aldosterone concentration (ALDO) were determined in the blood samples. Results have shown that the female animals subjected to CHH had lower levels of AP than the control female rats during all the studied periods whereas the AP of male hypoxic rats was only transiently diminished. All these changes were abolished by castration. PRA was not altered in either sex. The enzymatic complex was higher in male than in female control animals and decreased after castration in both hypoxic and control male rats. Ao was decreased by CHH in both sexes of intact rats and in female castrated animals. The renin substrate was higher in male than in female intact rats and decreased after castration in male animals. ALDO was increased after CHH only in male rats. Control female rats have higher levels of ALDO than male animals. Changes in the renin-angiotensin-aldosterone system related to CHH and also significant differences between sexes suggest that adrenal and gonadal corticosteroids may be involved in the main alterations presently observed.  相似文献   

11.
The effect of TRH induced secretion of TSH and prolactin (hPrl) on plasma renin activity (PRA), water and electrolyte excretion, was studied in 7 normal males before and after an intravenous injection of 2 ml normal saline or 200 microgram TRH. Plasma hPrl and TSH rose significantly (p less than 0.01) in all 7 subjects after TRH but not after saline injection. No significant differences in the hourly excretion of sodium, potassium and free water clearance were noted before and after either saline or TRH injection. Mean PRA values of the 7 subjects were similar after either the 2 ml saline of TRH injection. Our results indicate that despite a correlation between basal hPrl and sodium excretion as well as free water clearance, acute TRH induced elevation of hPrl is not associated with changes of urinary sodium and potassium excretion, free water clearance and PRA in normal males. These findings provide some evidence against a direct osmoregulatory role of hPrl in man.  相似文献   

12.
To evaluate the contribution of plasma volume expansion per se on acute inhibition of renin release by sodium chloride infusion, renin responses to comparable plasma volume expansion with intravenous infusions of sodium chloride, sodium bicarbonate, or albumin were studied in separate groups of sodium chloride-depleted rats. In addition, urinary prostaglandin E2 (PGE2) excretion rate was compared in the saline- and sodium bicarbonate-infused animals to evaluate the relationship between acute changes in renin release and intrarenal PGE2 synthesis. All three groups were plasma volume-expanded by approximately 55%. Plasma renin activity (PRA) decreased in response to saline (12.3 +/- 1.0 to 6.7 +/- 0.7 ng AI/ml/hr; P less than 0.01) whereas PRA did not change with sodium bicarbonate (11.3 +/- 1.4 to 10.2 +/- 1.5) or albumin (9.9 +/- 0.7 to 8.2 +/- 1.0). The rate of PGE2 excretion was not changed by either saline (72.2 +/- 13.1 to 72.3 +/- 18.7 pg/min) or sodium bicarbonate infusion (70.7 +/- 8.8 to 64.9 +/- 7.0). These results support the hypothesis that acute suppression of PRA by infusion of saline is not dependent upon volume expansion per se. In confirmation of earlier observations, inhibition of renin release by sodium chloride was related to chloride. Finally, the results suggest that the renal tubular mechanism for inhibition of renin release by sodium chloride is not related to overall changes in renal PGE2 synthesis in the rat.  相似文献   

13.
We studied the role of cardiac and arterial baroreceptors in the reflex control of arginine vasopressin (AVP) and renin secretion during graded hypotension in conscious dogs. The dogs were prepared with Silastic cuffs on the thoracic inferior vena cava and catheters in the pericardial space. Each experiment consisted of a control period followed by four periods of inferior vena caval constriction, during which mean arterial pressure (MAP) was reduced in increments of approximately 10 mmHg. The hormonal responses were measured in five dogs under four treatment conditions: 1) intact, 2) acute cardiac denervation (CD) by intrapericardial infusion of procaine, 3) after sinoaortic denervation (SAD), and 4) during combined SAD+CD. The individual slopes relating MAP to plasma AVP and plasma renin activity (PRA) were used to compare the treatment effects using a 2 x 2 factorial analysis. There was a significant (P < 0.01) effect of SAD on the slope relating plasma AVP to MAP but no effect of CD and no SAD x CD interaction. In contrast, the slope relating PRA and MAP was increased (P < 0.05) by SAD but was not affected by CD. These results support the hypothesis that stimulation of AVP secretion in response to graded hypotension is primarily driven by unloading arterial baroreceptors in the dog.  相似文献   

14.
Chronically catheterized conscious rats were infused intravenously with tonin at 2.4 and 12 micrograms x kg-1 x min-1 for 2 h. Plasma aldosterone concentration (PAC) at the end of the experiment was 11.2 +/- 2.4 ng% in controls, 8.5 +/- 2.8 ng% in rats infused with tonin at the lower rate, and 26.2 +/- 3.6 ng% (p less than 0.01 vs. controls) in rats infused at the higher rate. Plasma corticosterone (PC) was significantly higher (p less than 0.05) in the group infused at the high rate while plasma renin activity (PRA) was significantly reduced in this group of rats. Plasma angiotensin II (AII) concentration was similar in all three groups. PAC was elevated after tonin infusion in the presence of AII blockade. PAC in conscious sodium-depleted rats infused with tonin was not significantly changed, but PRA was significantly reduced (p less than 0.01). In chronically hypophysectomized rats, PAC remained unchanged by tonin infusion. The failure of tonin to stimulate aldosterone in hypophysectomized animals indicates a role of a pituitary hormone (probably ACTH) in the effect of tonin on adrenal secretion.  相似文献   

15.
To determine the degree to which increased sympathetic activity contributes to the increase in renin secretion produced by a low sodium diet, the beta-adrenergic blocking drug propranolol or saline vehicle was injected through indwelling jugular cannulas in rats fed a normal diet and rats fed a low sodium diet for 9 days. Plasma renin activity (PRA) and plasma renin concentration (PRC) were elevated by the low sodium diet, and these values were reduced 42-45% by propranolol, although they were still higher than in the normal diet controls. Plasma corticosterone was moderately elevated in cannulated rats on regular diet, compared to decapitated controls, but corticosterone did not differ between cannulated and decapitated rats on low salt diet; propranolol reduced plasma corticosterone. However, PRA and PRC were comparable in cannulated rats and decapitated controls on both the normal and the low sodium diets, and propranolol did not produce a significant reduction in PRA and PRC in rats fed the normal diet. This indicates that the effects of propranolol on PRA and PRC in the low sodium rats were not simply due to reduction of a stress-induced increase in renin secretion. The results indicate that increased sympathetic activity makes a substantial contribution to the increase in renin secretion produced by 9 days of dietary sodium restriction.  相似文献   

16.
When injected intraperitoneally, p-chloroamphetamine (PCA) causes the acute release of catecholamines and serotonin, increases mean arterial pressure (MAP) and increases plasma renin activity (PRA) in rats. Experiments were designed to determine the dose-response and time-course for the effect of PCA administered intravenously on PRA in conscious, unrestrained rats. It was found initially that intravenous doses of PCA ranging from 0.3 - 6.0 mg/kg caused rapid and marked hypertension, but produced variable effects on PRA for up to 30 minutes after injection. In a second study PCA (0.3 - 6.0 mg/kg) did not alter PRA at 30 or 60 minutes after intravenous injection, but did increase PRA 60 minutes after 10 mg/kg, intraperitoneally. When the hypertension elicited by intravenous PCA was abolished by pretreatment with the alpha 1-adrenoceptor antagonist prazosin (100 micrograms/kg, iv), PCA produced marked elevations in PRA from 15 - 60 minutes. Thus it appeared that the renin response to intravenous PCA was masked by an elevation in MAP; when the vascular response to PCA was blocked, a large increase in PRA was observed.  相似文献   

17.
Increases in plasma vasopressin and renin activity that occur in response to haemorrhage have been attributed in part to reflex effects from cardiac receptors and sinoaortic baroreceptors, but the relative importance of these different receptors in causing humoral changes during haemorrhage in conscious dogs has not been reported. We investigated this question by hemorrhaging 6 sham-operated (SO), 6 cardiac-denervated (CD), 4 sinoaortic-denervated (SAD), and 4 combined sinoaortic and cardiac-denervated (SACD), conscious dogs. Blood was removed at a rate of 0.9 ml/kg X min. Plasma vasopressin and renin samples were taken during a control period and after 10, 20, and 30 ml/kg of blood had been removed. Results (mean +/- SE) are shown in the tables below. (table; see text) These experiments illustrate that: resting plasma levels of vasopressin and renin in conscious dogs are unaffected by the denervation procedures used in these experiments, the increase in plasma vasopressin that occurs during haemorrhage is mediated largely via cardiac receptors, with a considerably smaller contribution from the sinoaortic baroreceptors, during moderately severe haemorrhage (30 ml/kg) vasopressin secretion can be increased by a mechanism independent of sinoaortic and cardiac reflexes, the increase in plasma renin activity that occurs during haemorrhage is not dependent upon either cardiac or sinoaortic reflexes.  相似文献   

18.
Changes in adrenal renin, which have been regarded as mediator of aldosterone secretion in the adrenal gland, following prolonged ACTH treatment were investigated in male Wistar rats. After 2 days of daily sc injection of ACTH (Cortrosyn-Zinc, 50 micrograms/day), parallel increases in adrenal renin and aldosterone, and plasma aldosterone (PA) were induced. The plasma renin activity (PRA) was slightly but not significantly decreased. Prolonged treatment with ACTH for 8 days increased the adrenal renin, causing a marked reduction in the adrenal aldosterone concentration. The degree of decrease in the PRA was again not significant and similar to that after 2 days of ACTH treatment. Contrary to previout reports which have indicated participation of adrenal renin in the regulation of aldosterone secretion in the adrenal gland, the present results showed reciprocal changes in adrenal renin and aldosterone after prolonged treatment with ACTH. The present findings suggest a complicated relation between adrenal renin and aldosterone secretion in the adrenal gland.  相似文献   

19.
We examined the effect of oral contraceptive (OC) usage on the renin angiotensin system (RAS) in two related experiments. In the first experiment, subjects were 34 healthy, normotensive, premenopausal women, 15 OC users and 19 OC nonusers, mean age 25 +/- 1 yr, ingesting a controlled sodium diet. We assessed arterial pressure, glomerular filtration rate, effective renal plasma flow, renal vascular resistance (RVR), and filtration fraction (FF) using inulin and p-aminohippurate clearance techniques, both at baseline and in response to the ANG II receptor blocker losartan. In the second experiment, in similar subjects, 10 OC users and 10 nonusers, we examined circulating RAS components [angiotensinogen, ANG II, aldosterone, plasma renin activity (PRA), and active renin] in response to incremental lower body negative pressure (LBNP), to determine whether renin secretion is suppressed by OC usage. OC users exhibited elevations in systolic blood pressure, RVR, and FF compared with nonusers, which were partially corrected by losartan. In the LBNP phase of the study, baseline measures of PRA, angiotensinogen, ANG II, and aldosterone were all increased in the OC group compared with the control group. Active renin levels did not differ between groups. Incremental LBNP resulted in increased circulating levels of RAS components in both groups. We conclude that the RAS is activated in women using OCs. There was no evidence that decreases in renin secretion result in normalization of the RAS as a whole.  相似文献   

20.
Somatostatin inhibits not only growth hormone secretion, but also the secretion of several other hormones. The role of somatostatin in prolactin (PRL) secretion has not been clearly demonstrated. The present study was undertaken to examine the effects of somatostatin on rat PRL secretion in several different circumstances where the circulating PRL level is elevated: (1) the estradiol primed intact male rat, (2) normal and (3) estradiol primed rats pretreated with pimozide, (4) normal and (5) estradiol primed hypophysectomized male rats with adenohypophyses grafted under the kidney capsule (HAG rat). Blood samples (70 microL) were taken every 2 min via an indwelling atrial cannula from conscious, unrestrained animals. In the estradiol primed intact rats, a bolus injection of somatostatin (10, 100, and 1000 micrograms/kg) lowered PRL levels in a dose-dependent manner. When the PRL concentration was elevated by the administration of pimozide (3 mg/kg), a dopaminergic receptor blocking agent, somatostatin was ineffective in decreasing plasma PRL concentration but the PRL concentration was lowered by somatostatin when the rat had been primed with estradiol. Somatostatin had no effect on the normal HAG rats, but lowered the plasma PRL concentration in the estradiol primed HAG rats. Since somatostatin inhibits PRL secretion only in the estradiol primed rats, it is suggested that estradiol priming creates a new environment, presumably via new or altered receptors, which can be inhibited by somatostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号