首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The osmotic regulation of the biosynthesis of membrane-derived oligosaccharides (MDO) in strains UB1005 and DC2 of Escherichia coli K-12 was examined; this regulation was previously reported by Clark (J. Bacteriol. 161:1049-1053, 1985) to be different from that observed by Kennedy for other strains of E. coli (Proc. Natl. Acad. Sci. USA 79:1092-1095, 1982). Osmotic regulation of the synthesis of MDO in UB1005 and DC2 is in fact indistinguishable from that previously reported for other strains of E. coli, with maximum production of MDO occurring in the medium of lowest osmolarity. The report of Clark to the contrary was apparently based on the inadequate methods for the measurement of MDO employed in that study. MDO are localized in the periplasm of wild-type E. coli cells. However, strain DC2, selected for hypersensitivity to a range of antibiotics, released most of its MDO into the medium, apparently as a result of greater outer membrane permeability.  相似文献   

3.
4.
5.
Polyamines decrease Escherichia coli outer membrane permeability.   总被引:1,自引:0,他引:1       下载免费PDF全文
The permeability of the outer membranes of gram-negative bacteria to hydrophilic compounds is mostly due to the presence of porin channels. We tested the effects of four polyamines (putrescine, cadaverine, spermidine, and spermine) on two processes known to depend on intact porin function: fluxes of beta-lactam antibiotics in live cells and chemotaxis. In both cases, inhibition was observed. Measurements of the rate of permeation of cephaloridine and of chemotaxis in swarm plates and capillary assays were used to determine the concentration dependence of this modulation. The effective concentration ranges depended on the nature of the polyamine and varied from submillimolar for spermine to tens of millimolar for cadaverine. Both OmpC and OmpF porins were inhibited, although the effects on OmpC appeared to be milder. These results are in agreement with our observations that polyamines inhibit porin-mediated ion fluxes in electrophysiological experiments, and they suggest that a low-affinity polyamine binding site might exist in these porins. These results reveal the potential use of porins as targets for blocking agents and suggest that polyamines may act as endogenous modulators of outer membrane permeability.  相似文献   

6.
From an arginine auxotrophic strain, a mutant was isolated which is able to utilize d-arginine as a source of l-arginine and shows a high sensitivity to inhibition of growth by canavanine. Transport studies revealed a four- to five-fold increased uptake of arginine and ornithine in cells from the mutant strain. The kinetics of entry of arginine and ornithine evidenced elevated maximal influx values for the arginine- and ornithine-specific transport systems. A close parallel between arginine transport activity and arginine binding activity with one arginine-specific binding periplasmic protein in the mutant strongly suggests that such binding protein is a component of the arginine-specific permease. The affinity between arginine and the binder, isolated from the mutant cells, as well as the electrophoretic mobility of the protein, remain unchanged. The enhanced transport activity of arginine and ornithine with mutant cells is insensitive to repression by arginine or ornithine, whereas the biosynthesis of arginine-forming enzymes is normally repressible. When transport activity was examined in strains with mutations leading to derepression of arginine biosynthesis, the regulation of arginine transport was found to be normal. These studies support the conclusion that arginine transport and arginine biosynthesis, in Escherichia coli K-12, are not regulated in a concerted manner, although both systems may have components in common.  相似文献   

7.
Summary The allelic state of relA influences the phenotype of Escherichia coli strains carrying the lysA22 mutation: lysA22 relA strains are Lys where lysA22 relA + strains grow (slowly) in the absence of lysine. This physiological effect has been related to an effect of the expression of the relA locus on the regulation of lysine biosynthesis. The fully derepressed levels of some lysine enzymes (aspartokinase III, aspartic semialdehyde dehydrogenase, dihydrodipicolinate reductase) are observed under lysine limitation only in rel + strains. And the induction of DAP-decarboxylase by DAP is much higher in rel + than in rel strains when an amino acid limitation of growth is also realised. These results are in agreement with the hypothesis of Stephens et al. (1975) on a possible role of the stringent regulation as a general signal for amino acid deficiency.  相似文献   

8.
With the emergence of multifaceted bioinformatics-derived data, it is becoming possible to merge biochemical and physiological information to develop a new level of understanding of the metabolic complexity of the cell. The biosynthetic pathway of de novo pyrimidine nucleotide metabolism is an essential capability of all free-living cells, and it occupies a pivotal position relative to metabolic processes that are involved in the macromolecular synthesis of DNA, RNA and proteins, as well as energy production and cell division. This regulatory network in all enteric bacteria involves genetic, allosteric, and physiological control systems that need to be integrated into a coordinated set of metabolic checks and balances. Allosterically regulated pathways constitute an exciting and challenging biosynthetic system to be approached from a mathematical perspective. However, to date, a mathematical model quantifying the contribution of allostery in controlling the dynamics of metabolic pathways has not been proposed. In this study, a direct, rigorous mathematical model of the de novo biosynthesis of pyrimidine nucleotides is presented. We corroborate the simulations with experimental data available in the literature and validate it with derepression experiments done in our laboratory. The model is able to faithfully represent the dynamic changes in the intracellular nucleotide pools that occur during metabolic transitions of the de novo pyrimidine biosynthetic pathway and represents a step forward in understanding the role of allosteric regulation in metabolic control.  相似文献   

9.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

10.
11.
E Boy  F Reinisch  C Richaud  J C Patte 《Biochimie》1976,58(1-2):213-218
A mutant of lysyl-tRNA synthetase has been isolated in Escherichia coli K12. With this strain the Kmapp for lysine is 25 fold higher than with the parental strain. The percentage of charged tRNAlys in vivo is only 7 per cent (as against 65 per cent with HFR H). Under these conditions no derepression of synthesis is observed for three lysine biosynthetic enzymes (AK III, ASA-dehydrogenase, DAP-decarboxylase) ; a partial derepression is obtained in the case of the dhdp-reductase. Thus lysyl-tRNA does not act as the only corepressor molecule in the lysine regulon.  相似文献   

12.
Summary When studying mutants affecting lysyl-tRNA synthetase or tRNALys (hisT, hisW), a lack of correlation is clearly observed between the amount of lysyl-tRNA and the level of derepression of several lysine biosynthetic enzymes. This excludes the possible role of lysyl-tRNA as the specific corepressor of the lysine regulon. However, the level of derepression of DAP-decarboxylase, the last enzyme of the lysine pathway, is very low in the hisT mutant; this indicates that tRNALys is a secondary effector involved in the regulation of the synthesis of this enzyme.Abbreviations DAP diaminopimelate - KRS lysyl-tRNA synthetase - L-lysine tRNA ligase (AMP) (EC6.1.16) - AK III lysinesensitive aspartokinase (EC 2.7.24) - ASA-dehydrogenase aspartic semialdehyde dehydrogenase (EC 1.2.1.10) - DHDP-reductase dihydrodipicolinic acid reductase - DAP-decarboxylase diaminopimelate decarboxylase (EC 4.1.1.20) - AK I threonine-sensitive aspartokinase - HDHI threonine-sensitive homoserine dehydrogenase  相似文献   

13.
Ornithine transcarbamylase from Escherichia coli, strain W, exhibits negative cooperativity with respect to ornithine, and the enzymatic activity is further regulated by orotate. The effect of orotate on ornithine transcarbamylase is dependent not only upon the carbamylphosphate concentration, but also upon the concentration of ornithine. At high concentrations of carbamylphosphate (10 mM), a conversion from negative cooperativity to positive cooperativity is observed with 10 mM orotate. At 1 mM carbamylphosphate, however, 10 mM orotate activates the enzyme at low ornithine concentrations, but as the ornithine concentration is increased above 5 mM, inhibition is observed. Thus, a regulatory link has been established between the pathways of arginine biosynthesis and pyrimidine biosynthesis, each of which utilizes carbamylphosphate.  相似文献   

14.
The technique developed by Casadaban (M. J. Casadaban, J. Mol. Biol. 104: 541-555, 1976) has been employed to construct Escherichia coli K-12 derivatives in which the genes determining lactose utilization are fused to the regulatory region of the biotin operon. Fusions of the lac genes to either arm of this divergently transcribed operon have been isolated. When the operon is derepressed, expression of the lac genes is sufficient to permit growth on lactose minimal medium. Repressing conditions prevent growth on lactose. This property of bio-lac fusion strains, as well as the ease of determining the level of operon expression by assaying beta-galactosidase, was used for the isolation and characterization of mutants defective in repression. Preliminary analyses of several newly isolated regulatory mutants are presented. For the several birA mutants examined, there appeared to be no direct correlation between effects on minimum biotin requirement and alterations in repressibility, suggesting a possible dual function for the gene. Parallel attempts to obtain fusions of lac to bioH were unsuccessful, indicating lack of direct biotin control at the bioH locus.  相似文献   

15.
The expression of gadA and gadB, which encode two glutamate decarboxylases (GADs) of Escherichia coli, is induced by an acidic environment and participate in acid resistance. In this study, we constructed a polyamine-deficient mutant and investigated the role of polyamines in acid resistance. The expression of gadA and gadB was shown to be dependent on polyamines. For that reason, the polyamine-deficient mutant was completely devoid of GAD activity and was very susceptible to low pH if large amounts of polyamines were not provided. We also showed that the polyamine-deficient mutant contained higher cAMP levels than the isogenic polyamine-proficient wild type, and cAMP negatively regulated the expression of gadA and gadB. Therefore, introduction of the cya (encoding adenylate cyclase) mutation allele into the polyamine-deficient mutant resulted in the increment of GAD activity and thus restored the reduced acid resistance of the mutant. The positive regulators, H-NS (histone-like protein, encoded by the hns gene) and RpoS (alternative RNA polymerase sigma subunit, encoded by rpoS gene), also significantly governed the expression of gadA and gadB, respectively. However, polyamines did not regulate either the intracellular H-NS level or rpoS expression under these culture conditions. These results strongly suggest that there are at least two different regulatory systems in acid resistance, one is positive regulation via a H-NS/RpoS system and the other is negative regulation via a polyamine/cAMP system.  相似文献   

16.
17.
18.
Starvation of cells of Escherichia coli K-12 for the aromatic amino acids results in an increased rate of synthesis of shikimate kinase activity. The two controlling amino acids are tyrosine and tryptophan, and starvation for both results in derepression. The product of the regulator gene tyrR also participates in this control, and shikimate kinase synthesis was depressed in tyrR mutants. Chromatography of cell extracts on diethylaminoethyl-Sephadex allowed partial separation of two shikimate kinase enzymes and demonstrated that only one of these subject to specific repression control involving tyrR. By contrast, chromatography of cell extracts with G-75 or G-200 columns revealed a singl-molecular-weight species of shikimate kinase activity with an apparent molecular weight of 20,000. The levels of shikimate kinase in a series of partial diploid strains indicated that aroL, the structural gene for the tyrR-controlled shikimate kinase enzyme, is located on the E. coli chromosome between the structural genes proC and purE. By means of localized mutagenesis, an aroL mutant of E. coli was isolated. The mutant was an aromatic prototroph and, by the criterion of column chromatography, appeared to have only a single functional species of shikimate kinase enzyme.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号