首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eusociality has repeatedly independently evolved in ants, bees, and wasps (Hymenoptera), leading to the idea that haplodiploidy may be an important driving factor in this group. Using a modeling approach, Quiñones et al. show that split sex ratios and worker control of sex ratios (achieved by removal of male brood) can promote the initial evolution of helping raise offspring of related individuals. However, over time, these factors can result in social polymorphism, that is, a mix of solitary and social nests, or to eusocial colonies with three different strategies, namely those that produce mostly females, mostly males, or a balanced sex ratio.  相似文献   

2.
Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.  相似文献   

3.
Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed.  相似文献   

4.
The mushroom bodies, central neuropils in the arthropod brain, are involved in learning and memory and in the control of complex behavior. In most insects, the mushroom bodies receive direct olfactory input in their calyx region. In Hymenoptera, olfactory input is layered in the calyx. In ants, several layers can be discriminated that correspond to different clusters of glomeruli in the antennal lobes, perhaps corresponding to different classes of odors. Only in Hymenoptera, the mushroom body calyx also receives direct visual input from the optic lobes. In bees, six calycal layers receive input from different classes of visual interneurons, probably representing different parts of the visual field and different visual properties. Taken together, the mushroom bodies receive distinct multisensory information in many segregated input layers.  相似文献   

5.
The kinship theory of genomic imprinting predicts that conflicts of interest between parents can promote the evolution of opposed expression patterns of maternally and paternally derived alleles in the offspring. The social Hymenoptera (ants, some bees, and some wasps) are particularly suitable to test this theory, because a variety of social conflicts are predicted due to relatedness asymmetries between female and male nestmates that are a corollary of haplo-diploid sex determination. Here I argue that the kin-selection predictions for genomic imprinting in social Hymenoptera might in many cases be more complex than previously suggested, because the optimal strategy will have to take fitness effects in different castes and sexes into account.  相似文献   

6.
Analyses of the evolution of colony queen number in eusocial insects have generally been conducted without specific reference to phylogenetic relationships, leading to incomplete evolutionary explanations for this key attribute of social organization. Consideration of queen number in a phylogenetic context in the highly eusocial Hymenoptera reveals that its evolution has been very conservative in the bees but that it is a highly labile character in most ants. The wasps appear intermediate in this respect, with some large and widespread clades characterized by little or no phylogenetic variability in queen number. This hierarchy of phylogenetic lability suggests that while ant populations may often be responsive to selection on colony queen number linked with local ecology, bees and wasps appear less responsive in this regard, with a significant element of phylogenetic conservatism involved in the expression of this social trait in the latter two groups.  相似文献   

7.

Background  

The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification.  相似文献   

8.
The social brain hypothesis posits that the cognitive demands of social behaviour have driven evolutionary expansions in brain size in some vertebrate lineages. In insects, higher brain centres called mushroom bodies are enlarged and morphologically elaborate (having doubled, invaginated and subcompartmentalized calyces that receive visual input) in social species such as the ants, bees and wasps of the aculeate Hymenoptera, suggesting that the social brain hypothesis may also apply to invertebrate animals. In a quantitative and qualitative survey of mushroom body morphology across the Hymenoptera, we demonstrate that large, elaborate mushroom bodies arose concurrent with the acquisition of a parasitoid mode of life at the base of the Euhymenopteran (Orussioidea + Apocrita) lineage, approximately 90 Myr before the evolution of sociality in the Aculeata. Thus, sociality could not have driven mushroom body elaboration in the Hymenoptera. Rather, we propose that the cognitive demands of host-finding behaviour in parasitoids, particularly the capacity for associative and spatial learning, drove the acquisition of this evolutionarily novel mushroom body architecture. These neurobehavioural modifications may have served as pre-adaptations for central place foraging, a spatial learning-intensive behaviour that is widespread across the Aculeata and may have contributed to the multiple acquisitions of sociality in this taxon.  相似文献   

9.
Sex in many species of Hymenoptera (ants, bees and wasps) is determined by a single locus that is heterozygous in females and hemizygous in (haploid) males. Beye and colleagues have now cloned the csd locus in the honeybee Apis mellifera and provide functional evidence that this gene is the primary switch in the sex-determination cascade of honeybees and possibly all Hymenoptera.  相似文献   

10.
Ants are common flower visitors, but their effects on plant reproductive fitness have not often been assessed. Flower-visiting ants were studied to determine whether they are antagonists or mutualists and whether they could influence floral or breeding system evolution in gynodioecious wild strawberry (Fragaria virginiana). Ant and flying pollinator (bees/flies) access to plants was manipulated, and visitation, fruit, and seed set were assessed. Ants visited flowers of hermaphrodites more often than those of females when bees and flies were excluded, but visited the sex morphs equally when they were present. Insect class did not influence fruit or seed set of hermaphrodites. In contrast, ants had both positive and negative effects on seed set in females. Females visited only by ants had 90% of the seed set of those visited only by bees/flies, and their seed set increased with ant visitation. The spatial pattern of seed set, however, suggests that ants may also damage pistils. Lastly, in contrast to bees and flies, ants failed to increase visitation with floral display size, suggesting that ant presence at flowers could reduce selection on this attractive trait. Findings suggest that when in high abundance, flower-visiting ants could affect breeding system and floral evolution in this gynodioecious plant.  相似文献   

11.
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.  相似文献   

12.
Social wasps show an obvious evolution of the differentiation in behavior and external size between reproductive and non-reproductive females, with no clear differences in the Stenogastrinae, via overlap in the Polistinae, to clear differences in the Vespinae. In this study, we examined the morphological appearance of the spermatheca in representative species of these three subfamilies. The general anatomical organization of the spermatheca comprises a reservoir, a duct and two spermathecal glands, and is in line with its common structure in other social Hymenoptera. All examined wasp species have a spermathecal reservoir with uniform wall thickness, which is similar to the situation in the bees, but differentiates them from the ants. Within the wasps, the shape of the reservoir, the shape of the spermathecal glands and their attachment site to the spermatheca differs among the Stenogastrinae, Polistinae and Vespinae. The reservoir wall is thick in the Polistinae and Vespinae, while in the Stenogastrinae, it varies from thin in Parischnogaster to thick in Eustenogaster, with an intermediate situation in Liostenogaster. In all examined species, we found no differences in the spermathecal development between reproductive and non-reproductive wasps.  相似文献   

13.
In the honey bee no allatotropin gene has been found, even though allatotropin stimulates the synthesis of juvenile hormone in this species. We report here that honey bees and other Hymenoptera do have a typical allatotropin gene, although the peptides predicted have a somewhat different structure from that of other insect allatotropins. Polyclonal antisera to honey bee allatotropin reacted with material in the neurohemal organs of the segmental nerves of abdominal ganglia. We were unable to find the allatotropin peptide using mass spectrometry in extracts from these tissues. Thus the expression of this gene in honey bees is less important than in other insect species. We also characterized the leucokinin gene which similarly appears to be very weakly expressed in worker honey bees. Unlike the allatotropin gene, which is conserved within Hymenoptera, the leucokinin gene is much more variable in structure and was not found in ants nor the parasitic wasp Nasonia vitripennis. The absence of significant expression of adipokinetic hormone (AKH) in the honey bee may be due to the existence of a second TATA box in the promotor region of the gene, which explains the production of an mRNA encoding a putative peptide precursor from which no AKH should be released. Such a second TATA box was not found in other Hymenoptera, and may therefore be specific for the two Apis species. It is suggested that functional disintegration of this important metabolic gene became possible in Apis because of the highly evolved social nature of the species.  相似文献   

14.
In some parasitoid wasps, infection by the micro‐organism Wolbachia leads to asexual reproduction. Within the Hymenoptera, the limits of distribution of parthenogenesis inducing Wolbachia have not yet been established. To address this issue, we screened all known thelytokous social hymenopteran species using a PCR assay. None was infected, and therefore we conclude that worker thelytoky evolves independently of Wolbachia in ants and bees. This supports the previously proposed hypothesis that a sex determining system based on heterozygosity may form a proximate limitation to Wolbachia‐induced parthenogenesis.  相似文献   

15.
16.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

17.
Associations with symbiotic microorganisms are a major source for evolutionary innovation in eukaryotes. Arthropods have long served as model systems to study such associations, especially since Paul Buchner’s (1965) seminal work that beautifully illustrated the enormous diversity of microorganisms associated with insects. Particularly high taxonomic and functional diversities of microbial symbionts have been found in the guts and gut‐associated organs of insects. These microorganisms play important roles in the digestion, nutrition and defence of the host. However, most studies of gut microorganisms have focused on single host taxa, limiting the ability to draw general conclusions on composition and functional roles of the insect gut microbiota. This is especially true for the diverse and important insect order Hymenoptera that comprises the bees, wasps and ants. Recently, Russell et al. (2009) analysed the bacterial community associated with diverse ant species and found evidence for changes in the microbial gut community coinciding with the evolution of herbivory. In this issue of Molecular Ecology, Martinson et al. (2011) provide the first broad‐scale bacterial survey for bees. Their findings substantiate earlier evidence for a surprisingly simple gut microbiota in honeybees (Apis mellifera) that is composed of only six to ten major phylotypes. Importantly, Martinson et al. demonstrate for the first time that the same bacterial phylotypes are major constituents of other Apis as well as Bombus species, but not of any other bees and wasps outside of the corbiculate bees, a clade of four tribes within the subfamily Apinae. These results indicate that corbiculate bees harbour a specific and possibly co‐evolved bacterial community in their digestive tract. Furthermore, the comparison with other bees and wasps suggests that changes in social lifestyle may have had a stronger effect on the evolution of the gut microbiota than the dietary shift from predatory ancestors to pollen‐feeding (i.e. herbivorous) species. These findings have far‐reaching implications for research on the microbial symbionts of insects as well as on the nutritional physiology of the ecologically and economically important group of corbiculate bees.  相似文献   

18.
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.  相似文献   

19.
Three modes of self cleaning occur in insects: nibbling by the maxillae, scraping one structure by another in one direction only, and rubbing back and forth while the respective parts are in continuous contact. This paper describes a comprehensive and comparative account of this behaviour in bees, with special reference to the cleaning of or by the forelegs. Bees, like all Hymenoptera, clean various parts of the head, including the mouthparts and the antennae, with the forelegs. Lower Hymenoptera scrape each antenna with either foreleg; in the species of Aculeata that possess the antenna cleaner (strigil) on the foreleg, only the ipsilateral leg is used. The thoracic dorsum of most bees, as in many sphecoid wasps, is scraped in a forward direction by the middle leg; Triepeolus spp., however, use the hind leg, and the Anthophorinae the foreleg. Some beetles and lacewings clean their forelegs in the mouthparts by nibbling and scraping. Most higher Hymenoptera as a rule scrape the foreleg between the ipsilateral maxilla and the labium; bees, however, clamp the foreleg between the flexed ipsilateral middle leg and then scrape it. An evolution of this behaviour is postulated via several intermediate forms derived from original stepping movements. Halictidae and Andrenidae clamp the foreleg for scraping underneath the middle tibia, whereas all other bees nearly always clamp it underneath the middle basitarsus. Very similar movements are used in various species for transferring pollen, oil, or nest materials from the foreleg to the middle leg. It is argued that the original way of pollen carrying in bees must have been by filling the crop through direct eating or by scraping pollen off the foreleg between the ipsilateral maxilla and the labium. The latter movement is widespread among bees and is homologous to the normal foreleg cleaning in the mouthparts of most other Hymenoptera. The efficiency of this behaviour is enhanced in many lower bees by a comb on the galea, which is the homologue of a similar structure widespread among aculeate wasps. In higher bees, Apidae and Anthophoridae, the galeal comb is replaced by an equifunctional stipes comb. Many bees have neither of these types of maxillary combs.  相似文献   

20.
继果蝇、按蚊和家蚕之后,意大利蜜蜂Apis mellifera(膜翅目: 蜜蜂科)成为又一种被完整测得基因组序列的昆虫。从此,蜜蜂研究进入后基因组时代。作为一种典型的社会性昆虫,许多和蜜蜂社会生活紧密相关的性状都是数量性状。这些性状研究中广泛涉及到了数量性状位点(quantitative traits loci,QTL)定位研究。本文综述了应用QTL对蜜蜂取食行为、自卫行为、体长、逆转学习等的研究现状,同时结合国内外最新研究进展,总结并展望了后基因组时代蜜蜂QTL的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号