首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion of CD4+CD25+ regulatory T cells (Tregs) in tumor microenvironment was one of the mechanisms by which cancer cells escaped host defense. Thymic stromal lymphopoietin (TSLP) contributes to the generation of natural Tregs in thymus. Therefore, the purpose of this report was to investigate the role of TSLP in the increasing prevalence of Tregs in lung cancer microenvironment. The expression ratio of TSLP protein in tumor tissues was significantly increased compared with that in benign lesion and non-cancer lung tissue. The prevalence of Tregs in tumor microenvironment was correlated with the expression of TSLP in lung cancer. Dendritic cells (DCs) were induced from peripheral blood mononuclear cells (PBMCs) collected from lung cancer patients and left unstimulated (imDCs) or exposed to hTSLP (TSLP-DCs) or LPS (LPS-DCs). TSLP-DCs expressed intermediate levels of CD83 and high levels of CD86, CD11C, and HLA-DR, which showed a characteristic of less mature DCs. TSLP-DCs secreted low levels of IL-6, IL-12, IL-10, TNF-α and IFN-γ, and high levels of TGF-β and MDC. The percentage of Tregs in CD4+CD25− T cells cocultured with TSLP-DCs group was statistically higher than that of LPS-DCs and imDCs. Transwell assays showed that TSLP-DCs exhibited increased ability to attract the migration of CD4+CD25− Tregs, when compared with imDCs. These results indicated that TSLP proteins were expressed in lung tumor tissue and correlated with the prevalence of Tregs. TSLP-DCs could induce CD4+CD25− T cells to differentiate into CD4+CD25+foxp3+ T cells and the migration of CD4+CD25+ T cells.  相似文献   

2.
Recent evidence suggests that decline of regulatory T cells (Tregs) play a critical role in the prevalence of autoimmune diseases inhibiting the maintenance of peripheral self tolerance, while its augmentation leads to insufficient antitumor response, accompanied with poor prognosis in various malignancies. Increased number of Tregs (CD4+CD25+FoxP3+) were noticed in peripheral blood mononuclear cells (PBMCs), tumor-infiltrating lymphocytes (TILs) and/or regional lymph nodes lymphocytes (LNLs) of patients with gastrointestinal tumors. The aim of our study was to investigate the correlation between the percentage of Tregs in peripheral blood of patients with colorectal carcinoma, using flow cytometric technique and tumor stages, classified as Dukes' A, B, C or D and by stage of differentiation. Peripheral blood venous samples were obtained from 92 patients with colorectal cancer and from 30 healthy adult volunteers. Statistical analysis: Linear regression equations were generated using a least-squares method and analyzed for differences of covariance. Statistical significance was calculated by Mann Whitney U-test. Our data has shown that 15% patients with colorectal cancer were classified as Dukes' A, 41% were Dukes' B, 35% were Dukes' C and 9% were Dukes' D. 54% patients with CRC were well differentiated, 11% were poorly differentiated, 20 were moderately differentiated, tage, 4% were mucinous carcinoma and rest of 11% were partly good differentiated with mucinous components. The increased percentage of Tregs in colorectal cancer patients correlates with tumor stage. These results indicate a possible involvement of regulatory T cells in disease progression. New strategies using inhibition or depletion of Tregs are necessary to elucidate the complexity of defective tumor immunity.  相似文献   

3.
4.
目的:比较黑龙江省HIV/AIDS患者与健康对照者(healthy controls,HCs)外周血CD4+CD25+FoxP3+调节性T细胞数量、免疫抑制功能的变化,探讨CD4+CD25+FoxP3+调节性T细胞在HIV/AIDS感染过程中的作用。方法:采用流式细胞仪检测21例HIV/AIDS患者及20例健康对照组的外周血CD4+CD25+FoxP3+调节性T细胞数量的百分比及绝对数量;采用共同培养方法检测HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞免疫抑制功能的变化;实时荧光定量聚合酶链反应(RT-FQ-PCR)检测HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞中FoxP3mRNA的表达。结果:黑龙江省HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞比率明显高于HCs(P<0.01),而CD4+CD25+FoxP3+调节性T细胞的绝对计数显著下降,且与CD4+T细胞绝对计数成反比;混合淋巴细胞共同培养结果显示,HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞的抑制功能无明显变化;HIV/AIDS患者外周血CD4+CD25+FoxP3+调节性T细胞的FoxP3 mRNA相对表达量无显著变化。结论:黑龙江省HIV/AIDS患者CD4+CD25+FoxP3+调节性T细胞的数量变化与病情相关。  相似文献   

5.
Background: Surgical stress has been suggested to facilitate colon cancer growth and metastasis. However, the precise mechanisms by which surgical trauma promotes colon cancer progression remain poorly understood. Methods: To unravel the mechanisms underlying surgery-induced colon cancer progression, a syngenic transplantation tumor model was established with CT26 cells, and the effect of laparotomy on tumor progression was investigated. Especially, the expression of several chemokines was assessed, and their roles in recruiting CD4+ CD25+ regulatory T cells (Tregs) after surgery were analyzed. Results: Tregs population was significantly increased in the tumor tissue and peripheral blood of tumor-bearing mice after laparotomy. C-C motif chemokine ligand 18 (CCL18) expression was significantly upregulated after laparotomy in tumor tissue and the peritoneal cavity of tumor-bearing mice, and it was positively correlated with the recruitment of Tregs. Functionally, CCL18 knockdown significantly reduces tumor growth and angiogenesis compared with control. Through analysis of Tregs, we found an upregulated proportion of Tregs in tumor tissue, peritoneal cavity, and peripheral blood after laparotomy, but this enhancement was blocked after CCL18 knockdown. In patients with colon cancer, a higher Tregs proportion is positively correlated to more advanced clinical TNM stages and shorter survival. Furthermore, a positive correlation was found between the serum CCL18 level and the Treg proportion in clinical samples. Conclusion: Surgical trauma contributes to colon cancer progression by increasing CCL18 expression and hence promotes Treg recruitment, which leads to an immunosuppressive environment.  相似文献   

6.
7.
The mechanisms underlying the extrathymic generation of CD25+CD4 regulatory T cells (Tregs) are largely unknown. In this study the IL-4R alpha-chain-binding cytokines, IL-4 and IL-13, were identified as inducers of CD25+ Tregs from peripheral CD25-CD4 naive T cells. IL-4-induced CD25+ Tregs phenotypically and functionally resemble naturally occurring Tregs in that they are anergic to mitogenic stimulation, inhibit the proliferation of autologous responder T cells, express high levels of the Forkhead box P3 and the surface receptors glucocorticoid-induced TNFR family-related protein and CTLA-4, and inhibit effector T cells in a contact-dependent, but cytokine-independent, manner. The IL-4-induced generation of peripheral Tregs was independent of the presence of TGF-beta or IL-10, but was dependent on Ag-specific stimulation and B7 costimulation. The significance of the IL-4Ralpha-binding cytokines in the generation of Ag-specific Tregs was emphasized in a mouse model of oral tolerance, in which neutralization of IL-4 and IL-13 in mice transgenic for the TCR specific for OVA completely inhibited the expansion of OVA-specific Tregs that can be induced in untreated mice by feeding the nominal Ag. Together, our results demonstrate that IL-4 and IL-13 play an important role in generating Forkhead box P3-expressing CD25+ Tregs extrathymically in an Ag-dependent manner and therefore provide an intriguing link between the well-established immunoregulatory capacity of Th2 cells and the powerful CD25+ Treg population. Moreover, our findings might provide the basis for the design of novel therapeutic approaches for targeted immunotherapy with Tregs to known Ags in autoimmune diseases or graft-vs-host reactions.  相似文献   

8.
CD4+CD25+FOXP3+ T regulatory cells (Tregs) are pivotal for the induction and maintenance of peripheral tolerance in both mice and humans. Rapamycin has been shown to promote tolerance in experimental models and to favor CD4+CD25+ Treg-dependent suppression. We recently reported that rapamycin allows in vitro expansion of murine CD4+CD25+FoxP3+ Tregs, which preserve their suppressive function. In the current study, we show that activation of human CD4+ T cells from healthy subjects in the presence of rapamycin leads to growth of CD4+CD25+FOXP3+ Tregs and to selective depletion of CD4+CD25- T effector cells, which are highly sensitive to the antiproliferative effect of the compound. The rapamycin-expanded Tregs suppress proliferation of both syngeneic and allogeneic CD4+ and CD8+ T cells. Interestingly, rapamycin promotes expansion of functional CD4+CD25+FOXP3+ Tregs also in type 1 diabetic patients, in whom a defect in freshly isolated CD4+CD25+ Tregs has been reported. The capacity of rapamycin to allow growth of functional CD4+CD25+FOXP3+ Tregs, but also to deplete T effector cells, can be exploited for the design of novel and safe in vitro protocols for cellular immunotherapy in T cell-mediated diseases.  相似文献   

9.
Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outcome remains unclear. Polymicrobial sepsis, induced by cecal ligation and puncture, caused an increased number of splenic Tregs compared with sham-treated mice. Splenic CD4+CD25+ T cells from septic mice expressed higher levels of Foxp3 mRNA and were more efficient suppressors of CD4+CD25- T effector cell proliferation. Isolated CD4+ T cells from septic mice displayed increased intracellular IL-10 staining following stimulation, indicating that T(R)1 cells may also be elevated in sepsis. Surprisingly, Ab depletion of total CD4+ or CD4+CD25+ populations did not affect mortality. Furthermore, no difference in survival outcome was found between CD25 or IL-10 null mice and wild-type littermates, indicating that Treg or T(R)1-generated IL-10 are not required for survival. These results demonstrate that, although sepsis causes a relative increase in Treg number and increases their suppressive function, their presence does not contribute significantly to overall survival in this model.  相似文献   

10.
11.
Organ transplantation (Tx) results in a transfer of donor leukocytes from the graft to the recipient, which can lead to chimerism and may promote tolerance. It remains unclear whether this tolerance involves donor-derived regulatory T cells (Tregs). In this study, we examined the presence and allosuppressive activity of CD4+CD25+Foxp3+ Tregs in perfusates of human liver grafts and monitored the cells presence in the circulation of recipients after liver Tx. Vascular perfusions of 22 liver grafts were performed with University of Wisconsin preservation and albumin solutions. Flow cytometric analysis revealed that perfusate T cells had high LFA-1 integrin expression and had a reversed CD4 to CD8 ratio compared with control blood of healthy individuals. These findings indicate that perfusate cells are of liver origin and not derived from residual donor blood. Further characterization of perfusate mononuclear cells showed an increased proportion of CD4+CD25+CTLA4+ T cells compared with healthy control blood. Increased percentages of Foxp3+ cells, which were negative for CD127, confirmed the enrichment of Tregs in perfusates. In MLR, CD4+CD25+ T cells from perfusates suppressed proliferation and IFN-gamma production of donor and recipient T cells. In vivo within the first weeks after Tx, up to 5% of CD4+CD25+CTLA4+ T cells in recipient blood were derived from the donor liver. In conclusion, a substantial number of donor Tregs detach from the liver graft during perfusion and continue to migrate into the recipient after Tx. These donor Tregs suppress the direct pathway alloresponses and may in vivo contribute to chimerism-associated tolerance early after liver Tx.  相似文献   

12.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

13.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

14.
T cell-mediated autoimmunity to collagen V (col-V), a sequestered yet immunogenic self-protein, can induce chronic lung allograft rejection in rodent models. In this study we characterized the role of CD4+ CD25+ regulatory T cells (Tregs) in regulating col-V autoimmunity in human lung transplant (LT) recipients. LT recipients revealed a high frequency of col-V-reactive, IL-10-producing CD4+ T cells (T IL-10 cells) with low IL-2-, IFN-gamma-, IL-5-, and no IL-4-producing T cells. These T(IL-10) cells were distinct from Tregs because they lacked constitutive expression of both CD25 and Foxp3. Expansion of T IL-10 cells during col-V stimulation in vitro involved CTLA-4 on Tregs, because both depleting and blocking Tregs with anti-CTLA4 F(ab')2 mAbs resulted in loss of T IL-10 cells with a concomitant increase in IFN-gamma producing Th1 cells (TIFN-gamma cells). A Transwell culture of col-V-specific T IL-10 cells with Th1 cells (those generated in absence of Tregs) from the same patient resulted in marked inhibition of IFN-gamma and proliferation of T(IFN-gamma) cells, which was reversed by neutralizing IL-10. Furthermore, the T IL-10 cells were HLA class II restricted because blocking HLA class II on APCs resulted in the loss of IL-10 production. Chronic lung allograft rejection was associated with the loss of Tregs with a concomitant decrease in T IL-10 cells and an increase in T IFN-gamma cells. We conclude that LT patients have col-V-specific T cells that can be detected in the peripheral blood. The predominant col-V-specific T cells produce IL-10 that suppresses autoreactive Th1 cells independently of direct cellular contact. Tregs are pivotal for the induction of these "suppressor" T IL-10 cells.  相似文献   

15.
CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.  相似文献   

16.
Mouse studies demonstrated that infusion of CD4+CD25+ regulatory T cells (Tregs) prevented graft versus host disease (GVHD) lethality after bone marrow transplantation (BMT). But the potential impact of human Tregs on GVHD has not been well demonstrated. In this study, we demonstrated that human Tregs enriched from peripheral blood of healthy donors could be expanded ex vivo to clinically relevant cell numbers in 2-3 weeks while maintaining Foxp3, CD25, CTLA-4, and CD62L expression as well as in vitro suppressive function. Furthermore, injection of human PBL into NOD/SCID mice induced lethal xenogenic GVHD, but co-transfer of expanded human Tregs with human PBL significantly enhanced survival, reduced GVHD symptoms, and inhibited human IgG/IgM production in the NOD/SCID mice. These results demonstrated that ex vivo expanded human Tregs retained their in vivo suppressive activity and prevented lethal xenogeneic GVHD, revealing the therapeutic potential of expanded human Tregs for GVHD.  相似文献   

17.
As a component of the innate immune cell population, γδ T cells are involved in tumor immunosurveillance and host defense against viral invasion. In this study, we demonstrated a novel function of human γδ T cells as regulatory cells by detecting their suppressive effect on the proliferation of autologous naive CD4(+) T cells. These regulatory γδ T cells (γδ Tregs) could be generated in vitro by stimulating with anti-TCRγδ in the presence of TGF-β and IL-2. Similar to CD4(+)Foxp3(+) Tregs, γδ Tregs also expressed Foxp3. Additionally, they primarily belonged to the Vδ1 subset with a CD27(+)CD25(high) phenotype. Furthermore, these γδ Tregs showed an immunoregulatory activity mainly through cell-to-cell contact. Importantly, this γδ regulatory population decreased in the peripheral blood of systemic lupus erythematosus patients, suggesting a potential mechanism in understanding the pathogenesis of systemic lupus erythematosus.  相似文献   

18.
During pregnancy, the maternal immune system has to tolerate the persistence of fetal alloantigens. Many mechanisms contribute to the prevention of a destructive immune response mediated by maternal alloreactive lymphocytes directed against the allogeneic fetus. Murine studies suggest that CD4(+)CD25(+) T cells provide mechanisms of specific immune tolerance to fetal alloantigens during pregnancy. Previous studies by our group demonstrate that a significantly higher percentage of activated T cells and CD4(+)CD25(bright) T cells are present in decidual tissue in comparison with maternal peripheral blood in human pregnancy. In this study, we examined the phenotypic and functional properties of CD4(+)CD25(bright) T cells derived from maternal peripheral blood and decidual tissue. Depletion of CD4(+)CD25(bright) T cells from maternal peripheral blood demonstrates regulation to third party umbilical cord blood cells comparable to nonpregnant controls, whereas the suppressive capacity to umbilical cord blood cells of her own child is absent. Furthermore, maternal peripheral blood shows a reduced percentage of CD4(+)CD25(bright)FOXP3(+) and CD4(+)CD25(bright)HLA-DR(+) cells compared with peripheral blood of nonpregnant controls. In contrast, decidual lymphocyte isolates contain high percentages of CD4(+)CD25(bright) T cells with a regulatory phenotype that is able to down-regulate fetus-specific and fetus-nonspecific immune responses. These data suggest a preferential recruitment of fetus-specific regulatory T cells from maternal peripheral blood to the fetal-maternal interface, where they may contribute to the local regulation of fetus-specific responses.  相似文献   

19.
CD4+CD25+ T regulatory cells (Treg) are thought to be important in the peripheral tolerance. Recent evidence suggests that human peripheral blood CD4+CD25+ T cells are heterogeneous and contain both CD4+CD25(high) T cells with potent regulatory activity and many more CD4+CD25(low/med) nonregulatory T cells. In this study, we found that virtually all peripheral blood CD4+CD25(high)Foxp3+ Treg expressed high levels of the chemokine receptor CCR4. In addition, 80% of Treg expressed cutaneous lymphocyte Ag (CLA) and 73% expressed CCR6. These molecules were functional, as CLA+ Treg showed CD62E ligand activity and demonstrable chemotactic responses to the CCR4 ligands CCL22 and CCL17 and to the CCR6 ligand CCL20. The phenotype and chemotactic response of these Treg were significantly different from those of CD4+CD25(med) nonregulatory T cells. We further demonstrated that blood CLA+ Treg inhibited CD4+CD25- T cell proliferation induced by anti-CD3. Based on homing receptor profile, CLA+ Treg should enter normal skin. We next isolated CD4+CD25(high) T cells directly from normal human skin; these cells suppressed proliferation of skin CD4+CD25- T cells. Therefore, the majority of true circulating Treg express functional skin-homing receptors, and human Treg may regulate local immune responses in normal human skin.  相似文献   

20.
目的:检测非霍奇金淋巴瘤(non-Hodgkin’s lymphoma,NHL)患者外周血中CD4+CD25+调节性T细胞(CD4+CD25+regulatoryT cell,Treg)的改变,探讨Treg与NHL的相关性。方法:病例组(n=60)为本院收治的初诊NHL患者,对照组(n=60)为本院健康体检者,用流式细胞技术联合标记CD4、CD25检测对照组及病例组化疗前、化疗后的外周血中CD4+CD25+调节性T细胞的分布特点。结果:(1)病例组化疗前外周血中CD4+细胞比例显著低于对照组(P<0.05),CD4+CD25+调节性T细胞比例显著高于对照组(P<0.05);(2)病例组化疗后,CD4+细胞比例明显高于化疗前(P<0.05),CD4+CD25+调节性T细胞比例明显低于化疗前(P<0.05);(3)病例组化疗后CD4+细胞比例与对照组无显著差异(P>0.05),而CD4+CD25+调节性T细胞比例显著高于对照组(P<0.05)。结论:非霍奇金淋巴瘤患者外周血中CD4+CD25+调节性T细胞比例升高,存在机体免疫抑制,化疗可降低CD4+CD25+调节性T细胞比例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号