首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. The candidate systems will be reviewed. It will be argued that the current theoretical and experimental evidence suggests that osteocytes are the principal mechanosensory cells of bone, that they are activated by shear stress from fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. The movement of bone fluid from the region of the bone vasculature through the canaliculi and the lacunae of the surrounding mineralized tissue accomplishes three important tasks. First, it transports nutrients to the osteocytes in the lacunae buried in the mineralized matrix. Second, it carries away the cell waste. Third, the bone fluid exerts a force on the cell process, a force that is large enough for the cell to sense. This is probably the basic mechanotransduction mechanism in bone, the way in which bone senses the mechanical load to which it is subjected. The mechanisms of bone fluid flow are described with particular emphasis on mechanotransduction. Also described is the cell to cell communication by which higher frequency signals might be transferred, a potential mechanism in bone by which the small whole tissue strain is amplified so the bone cells can respond to it. One of the conclusions is that higher frequency low amplitude strains can maintain bone as effectively as low frequency high amplitude strains. This conclusion leads to a paradigm shift in how to treat osteoporosis and how to cope with microgravity.  相似文献   

2.
To help to understand the modelling process that occurs when a scaffold is implanted it is vital to understand the rather complex bone remodelling process prevalent in native bone. We have formulated a mathematical model that predicts osteoactivity both in scaffolds, as well as in bone in vivo and could set a basis for the more detailed allosteric models. The model is extended towards a bio-cybernetic vision of basic multicellular unit (BMU) action, when some of the regulation loops have been modified to reflect the allosteric control mechanisms, developed by Michaels-Menten, Hill, Koshland-Nemethy-Filmer, Monod-Wyman-Changeux. By implementation of this approach a four-dimensional system was obtained that shows steady cyclic behaviour using a wide range of constants with clear biological meaning. We have observed that a local steady state appears as a limiting cycle in multi-dimensional phase space and this is discussed in this paper. Physiological interpretation of this limiting four-dimension cycle possibly related to a conservative-like value has been proposed. Analysis and simulation of the model has shown an analogy between this conservative value, as a kind of substrate-energy regenerative potential of the bone remodelling system with a molecular nature, and to the classical physical value--energy. This dynamic recovery potential is directed against both mechanical and biomechanical damage to the bone. Furthermore, the current model has credibility when compared to the normal bone remodelling process. In the framework of widely recognised Hill mechanisms of allosteric regulation the cyclic attractor, described formerly for a pure cellular model, prevails for different forms of feedback control. This result indicates the viability of the proposed existence of a conservative value (analogous to energy) that characterises the recovery potential of the bone remodelling cycle. Linear stability analysis has been performed in order to determine the robustness of the basic state, however, additional work is required to study a wider range of constants.  相似文献   

3.
In patients with severe traumatic brain injury (TBI), healing of a fracture of long or large bone has been observed to be accelerated with excessive callus formation and united at a faster rate. It seems that the enhanced osteogenesis in patients strongly promotes the growth of osteoblast cells. The existing hypothesis is not convincing in explaining the mechanisms of this problem. Craniocerebral trauma patients present a state of hypercoagulability at early stage and thrombin content was very high level at the site of injury. Thrombin is an important link between coagulation and inflammation, and exerts multiple effects upon osteoblasts including stimulating proliferation and inhibiting osteoblast differentiation and apoptosis. Whether this rapidly forming new bone is caused by thrombin has not yet been identified. We hypothesize that in the case of an individual with a head injury, thrombin might be a potential regulator of early fracture healing, which result in accelerated bone healing and hypertrophic callus. If this hypothesis is verified, it will be helpful for the understanding of the basic mechanisms involved in control of bone repair and potential for the development of new novel therapeutic agents.  相似文献   

4.
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re‐develop the three‐dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.  相似文献   

5.
Bone development is one of the key processes characterizing childhood and adolescence. Understanding this process is not only important for physicians treating pediatric bone disorders, but also for clinicians and researchers dealing with postmenopausal and senile osteoporosis. Bone densitometry has great potential to enhance our understanding of bone development. The usefulness of densitometry in children and adolescents would be increased if the physiological mechanisms and structural features of bone were given more consideration in the design and interpretation of densitometric studies. This review gives an overview on the most relevant techniques of quantitative noninvasive bone analysis. Furthermore it describes the relationship between bone biology, selected surrogates describing the biological processes and the possibilities of measuring these surrogates specifically and precisely by the different devices. The overall recommendation for researchers in this field is to describe firstly the biological process to be analyzed (bone growth in length, remodeling or modeling, or all together), secondly the bone parameter which describes this process, and thirdly the reason for selecting a special device.  相似文献   

6.
Bone is a specialized connective tissue with a calcified extracellular matrix in which cells are embedded. Besides providing the internal support of the body and protection for vital organs, bone also has several important metabolic functions, especially in mineral homeostasis. Far from being a passive tissue, it is continuously being resorbed and formed again throughout life, by a process known as bone remodeling.Bone development and remodeling are influenced by many factors, some of which may be modifiable in the early steps of life. Several studies have shown that environmental factors in uterus and in infancy may modify the skeletal growth pattern, influencing the risk of bone disease in later life. On the other hand, bone remodeling is a highly orchestrated multicellular process that requires the sequential and balanced events of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. These processes are accompanied by specific gene expression patterns which are responsible for the differentiation of the mesenchymal and hematopoietic precursors of osteoblasts and osteoclasts, respectively, and the activity of differentiated bone cells. This review summarizes the current understanding of how epigenetic mechanisms influence these processes and their possible role in common skeletal diseases.  相似文献   

7.
The BMP proteins in bone formation and repair.   总被引:9,自引:0,他引:9  
From recent advances in the fields of bone biology and pattern formation, the first clues to our understanding of embryonic skeletal development are beginning to emerge. This complex process involves an integration of spatial patterning and the differentiation of specialized cells that make up bone and cartilage. The result is a scale model of the mature skeleton which is able to grow in size to fit the adult body plan. In the mature animal, bone repair after injury appears to be similar to bone formation in the embryo, suggesting that analogous mechanisms for the control of bone formation may exist in the adult and embryonic skeletons.  相似文献   

8.
Differences in jaw morphology among adult carnivorans are well established, but the ontogenetic mechanisms by which these differences arise are largely unexplored. Mandibular ontogeny in Crocuta crocuta and Puma concolor is analysed biomechanically using principles of beam theory. In each species, the development of cross-sectional properties of the mandibular corpus associated with rigidity under loading follows a biphasic pattern of growth. In early postnatal growth, deposition of cortical bone appears to be constrained by the overall weaker tissue with which juvenile skeletons are constructed and by the need to volumelrically accommodate the developing teeth within their bony crypts. Thus, this stage of growth is characterized by a net periosteal deposition of bone and a swelling of the medullary cavity. In late postnatal growth, the constraints on endosteal deposition of bone are relieved as the permanent teeth erupt; thus, cortical thicknesses increase sharply by periosteal expansion as well as medullary contraction. Finally, it is noted that basic differences in jaw construction between Crocuta and Puma appear to develop prenatally as they are largely in place at birth. Hence, postnatal development enhances, but does not soley contribute to, the biomechanical differences in the jaws of these species.  相似文献   

9.
Monocyte fusion into osteoclasts, bone resorbing cells, plays a key role in bone remodeling and homeostasis; therefore, aberrant cell fusion may be involved in a variety of debilitating bone diseases. Research in the last decade has led to the discovery of genes that regulate osteoclast fusion, but the basic molecular and cellular regulatory mechanisms underlying the fusion process are not completely understood. Here, we reveal a role for Dyrk2 in osteoclast fusion. We demonstrate that Dyrk2 down regulation promotes osteoclast fusion, whereas its overexpression inhibits fusion. Moreover, Dyrk2 also promotes the fusion of foreign‐body giant cells, indicating that Dyrk2 plays a more general role in cell fusion. In an earlier study, we showed that fusion is a cell heterotypic process initiated by fusion‐founder cells that fuse to fusion‐follower cells, the latter of which are unable to initiate fusion. Here, we show that Dyrk2 limits the expansion of multinucleated founder cells through the suppression of the fusion competency of follower cells.  相似文献   

10.
Multiple sclerosis (MS) is a complex human autoimmune-type disease with a predominantly unknown etiology. Immunologic destruction of myelin basic protein (MBP) throughout the nervous system is the major pathology of multiple sclerosis. This review will attempt to update new information about basic mechanisms and therapeutic management of the disease. The significance of the structure of MBP is discussed with respect to the contribution of such structures to the disease process. A number of MBP peptides that serve as the immunodominant antigens in MS patients have been identified. These peptides have been studied in animal models for their antigenic characteristics and ability to induce disease. Evidence for genetic contributions is reviewed with multigenerational twin studies providing the best evidence for susceptible haplotypes. The role of microorganisms/viruses and environmental agents are discussed as potential etiological factors but are now thought to be of minor importance to the primary causal development of the disease. Of major consideration are immunological mechanisms that contribute to the development of autoimmunity. In particular, antigen expression, cytokine and leukocyte interactions, and regulatory T-cells are discussed. Particular attention is given to regulatory T-cells (Treg), which help balance/modulate other T-cells such as Th1 and Th2 cells, and how such Treg regulate autoimmunity is addressed. The importance of the role of Tregs is exemplified by the demonstration that administration of oral antigens can induce specific Tregs that counteract experimental autoimmune encephalomyelitis in animal models. The significance of animal studies to human multiple sclerosis is discussed. A potential role for natural antibodies and innate immune mechanisms to help provide resistance to disease development is also reviewed. Finally, a variety of therapeutic agents that have been and continue to be utilized for multiple sclerosis is reviewed. Trials with oral antigens, such as glatirmer acetate (copolymer 1) especially in combination with interferon-beta, have shown promise. Antibody therapy and bone marrow transplantation are also briefly discussed.  相似文献   

11.
Endochondral ossification is a basic physiological process in limb development and is central to bone repair and linear growth. Factors which regulate endochondral ossification include several biophysical and biochemical agents and are of interest from clinical and biological perspectives. One of these agents, electric stimulation, has been shown to result in enhanced synthesis of extracellular matrix, calcification, and bone formation in a number of experimental systems and is the subject of this review. The effects of electric stimulation have been studied in embryonic limb rudiments, growth plates, and experimental endochondral ossification induced with decalcified bone matrix and, in all these models, endochondral ossification has been enhanced. It is not known definitively whether electric fields stimulate cell differentiation or modulate an increased number of molecules synthesized by committed cell population and this is a fertile area of current study.  相似文献   

12.
Exploring bone proteome is an important and challenging task for understanding the mechanisms of physiological/pathological process of bone tissue. However, classical methods of protein extraction for soft tissues and cells are not applicable for bone tissue. Therefore, method development of efficient protein extraction is critical for bone proteome analysis. We found in this study that the protein extraction efficiency was improved significantly when bone tissue was demineralized by hydrochloric acid (HCl). A sequential protein extraction method was developed for large-scale proteome analysis of bone tissue. The bone tissue was first demineralized by HCl solution and then extracted using three different lysis buffers. As large amounts of acid soluble proteins also presented in the HCl solution, besides collection of proteins in the extracted lysis buffers, the proteins in the demineralized HCl solution were also collected for proteome analysis. Automated 2D-LC-MS/MS analysis of the collected protein fractions resulted in the identification of 6202 unique peptides which matched 2479 unique proteins. The identified proteins revealed a broad diversity in the protein identity and function. More than 40 bone-specific proteins and 15 potential protein biomarkers previously reported were observed in this study. It was demonstrated that the developed extraction method of proteins in bone tissue, which was also the first large-scale proteomic study of bone, was very efficient for comprehensive analysis of bone proteome and might be helpful for clarifying the mechanisms of bone diseases.  相似文献   

13.
Plants start their life as a single cell, which, during the process of embryogenesis, is transformed into a mature embryo with all organs necessary to support further growth and development. Therefore, each basic cell type is first specified in the early embryo, making this stage of development excellently suited to study mechanisms of coordinated cell specification—pattern formation. In recent years, it has emerged that the plant hormone auxin plays a prominent role in embryo development. Most pattern formation steps in the early Arabidopsis embryo depend on auxin biosynthesis, transport, and response. In this article, we describe those embryo patterning steps that involve auxin activity, and we review recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development.  相似文献   

14.
Biological parameters, such as bone resorption and formation constants, are important variables to achieve optimised hard tissue scaffolds design. To help to understand the modelling process that occurs when a scaffold is implanted it is vital to understand the rather complex bone remodeling process prevalent in native bone. One approach to developing a mathematical model that predicts osteoactivity both in scaffolds, as well as in bone in vivo, is based on a bio-cybernetic vision of basic multicellular unit (BMU) action -. In the case of the model presented in this paper, an additional loop of regulation based on osteocyte activity has been added. This approach has resulted in a four-dimensional system, which shows steady-quasi-cyclic behaviour using a particular range of constants with real biological meaning. The initial findings suggesting that the basic steady-state appears as a torus in multidimensional phase space have been discussed. The existence of this surface in the osteoclasts-osteoblasts-osteocytes-bone subspace indicates that there is a first integral for this dynamic system. Biological and physical interpretation of this integral as a conservative value has been proposed. It is possible to draw an analogy between this conservative value, as a kind of substrate-energy regenerative potential of the bone remodeling system with a molecular nature, to the classical physical value (energy). There are clear indications that there is recovering potential within the BMU that results in a steady operating genetically predominated bone remodeling process. This recovering potential is directed against both mechanical and biomechanical damage to the bone. The current model has credibility when compared to the normal bone remodeling process. However, additional work is required to study a wider range of constants.  相似文献   

15.
The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.  相似文献   

16.
The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved in Ca2+ homeostasis as well as the possible role of the RyR-based signaling mechanisms in longer-term cell regulatory processes.  相似文献   

17.
18.
After their formation in the bone marrow, eosinophils circulate with a short half-life and are distributed throughout the body, especially in mucosal and sub-mucosal regions. Although a small amount of these cells are normally seen in healthy tissue, blood and tissue eosinophilia is a hallmark of helminthic and allergic diseases. The role of eosinophils in the normal physiology of mucosal tissues is not understood, but there is good evidence to demonstrate that these cells protect the host at least against some intestinal helminths, specially those with a lung cycle. In addition, there are now many data that support a role for eosinophils in the pathophysiology of allergic diseases, such as asthma. Because helminthic diseases have been largely controlled in developed countries, there has been much interest in the development of drugs which affect eosinophil migration and/or activation in the tissue and which may, thus, be useful in the treatment of allergic conditions. The understanding of the mechanisms controlling eosinophil trafficking and/or activation are essential in the development of anti-eosinophil-based therapeutic strategies. The present paper reviews aspects of eosinophil biology with emphasis on the role of eosinophils in parasitic infections and allergy, the basic mechanisms underlying the trafficking of eosinophils into tissue and how these can be modulated pharmacologically.  相似文献   

19.
New trends in the treatment of bone metastasis   总被引:1,自引:0,他引:1  
Bone metastasis is often the penultimate harbinger of death for many cancer patients. Bone metastases are often associated with fractures and severe pain resulting in decreased quality of life. Accordingly, effective therapies to inhibit the development or progression of bone metastases will have important clinical benefits. To achieve this goal understanding the mechanisms through which bone metastases develop and progress may provide targets to inhibit the metastases. In the past few years, there have been advances in both understanding the mechanisms through which bone metastases develop and how they impact bone remodeling. Additionally, gains in promising clinical strategies to target bone metastases have been developed. In this prospectus, we will discuss some of these advances.  相似文献   

20.
杨晓 《生命科学》2008,20(2):165-170
转化生长因子-β(TGF-β)是一个包括数十种TGF-βs、骨形态发生蛋白(BMPs)等配体在内的生长因子超家族,在哺乳动物整体和组织器官发育过程中具有广泛而重要的功能。Smad4是细胞内TGF-β信号通路的核心信号转导分子。为了深入研究Smad4介导的TGF-β信号在骨骼发育过程中的生理功能,我们利用转基因技术研制了软骨细胞、肥大型软骨细胞和成骨细胞分别特异性表达Cre重组酶的转基因小鼠,利用条件基因敲除技术研制了不同类型骨骼细胞Smad4基因敲除的小鼠模型。表型分析结果揭示了Smad4在软骨细胞增殖和分化、骨重塑以及稳态维持过程中的功能以及相关的分子机制,为理解人类相关骨骼疾病的发生及其机理提供了新的线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号