首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent report of a novel carbonic anhydrase (CDCA1) with Cd as its metal centre in the coastal diatom Thalassiosira weissflogii has led us to search for the occurrence of this Cd enzyme (CDCA) in other marine phytoplankton and in the environment. Using degenerate primers designed from the published sequences from T. weissflogii and a putative sequence in the genome of Thalassiosira pseudonana, we show that CDCA is widespread in diatom species and ubiquitous in the environment. All detected genes share more than 64% amino acid identity with the CDCA of T. pseudonana. Analysis of the amino acid sequence of CDCA shows that the putative Cd binding site resembles that of beta-class carbonic anhydrases (CAs). The prevalence of CAs in diatoms that presumably contain Cd at their active site probably reflects the very low concentration of Zn in the marine environment and the difficulty in acquiring inorganic carbon for photosynthesis. The cdca primers developed in this study should be useful for detecting cdca genes in the field, and studying the conditions under which they are expressed.  相似文献   

2.
Lane TW  Morel FM 《Plant physiology》2000,123(1):345-352
TWCA1 is the major Zn-requiring isoform of carbonic anhydrase (CA) in the marine diatom Thalassiosira weissflogii. We have examined the roles that trace metals and CO(2) play in the regulation of TWCA1 expression over ranges of concentrations that bracket those encountered in the marine environment. Both steady-state levels of TWCA1 and the kinetics of induction were measured by western analysis. TWCA1 levels correlated well with cellular CA activity levels. TWCA1 was induced at a low CO(2) concentration but the level of induction, as determined by western analysis, was dependent on the availability of Zn. Co effectively substituted for Zn in regulating TWCA1 expression and promoting TWCA1 activity. Upon shift from low to high CO(2), the concentration of TWCA1 decreased. The expression of TWCA1 is diel cycle regulated, and cellular TWCA1 decreased during the dark phase. These results provide the basis for studying the expression of CA in field populations and, taken together with previous radiolabeling studies, provide strong evidence of in vivo metal substitution of Co for Zn in a CA. Our data also support the conclusion that TWCA1 plays a central role in carbon acquisition in T. weissflogii.  相似文献   

3.
4.
5.
Carbonic anhydrase (CA) is a ubiquitous metalloenzyme responsible for accelerating the interconversion of CO2 and bicarbonate. Although CAs are involved in a broad range of biochemical processes involving carboxylation or decarboxylation reactions, they are of special interest due to their role in photosynthetic CO2 assimilation in marine phytoplankton, especially under low‐CO2 conditions. Several phylogenetically independent classes of CAs have been identified in a variety of marine phytoplankton. TWCA1, first discovered in Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle, is the founding member of the δ‐class of CAs; these appear to be extracellular enzymes, but are still relatively poorly characterized. To date, it has remained uncertain whether TWCA1 possesses true CA activity due to the difficulty in producing a functional protein in a heterologous expression system. Herein we describe the fusion of a full‐length open reading frame of TWCA1 to the coding sequence of a self‐splicing intein in a pTWIN2 expression vector that has allowed successful production of a functional enzyme in Escherichia coli. Assay of the recombinant protein shows that TWCA1 is a catalytically active δ‐CA possessing both CO2 hydration and esterase activity.  相似文献   

6.
7.
Carbonic anhydrases (CAs) catalyze with high efficiency the reversible hydration of carbon dioxide, an essential reaction for many biological processes, such as photosynthesis, respiration, renal tubular acidification, and bone resorption. Diatoms, which are one of the most common types of phytoplankton and are widespread in oceans, possess CAs fundamental for acquisition of inorganic carbon. Recently, in the marine diatom Thalassiosira weissflogii a novel enzyme, CDCA1, naturally using Cd in its active site, has been isolated and categorized in a new CA class, namely zeta-CA. This enzyme, which consists of three repeats (R1, R2 and R3), is a cambialistic carbonic anhydrase that can spontaneously exchange Zn or Cd at its active centre, presumably an adaptative advantage for diatoms that grow fast in the metal-poor environment of the surface ocean. In this paper we completed the characterization of this enzyme, reporting the X-ray structure of the last repeat, CDCA1-R3 in its cadmium-bound form, and presenting a model of the full length protein obtained by docking approaches. Results show that CDCA1 has a quite compact not symmetric structure, characterized by two covalently linked R1-R2 and R2-R3 interfaces and a small non-covalent R1-R3 interface. The three dimensional arrangement shows that most of the non-conserved aminoacids of the three repeats are located at the interface regions and that the active sites are far from each other and completely accessible to the substrate. Finally, a detailed inhibition study of CDCA1-R3 repeat in both cadmium- and zinc- bound form has been performed with sulfonamides and sulfamates derivatives. The results have been compared with those previously reported for other CA classes, namely alpha- and beta-classes, and correlated with the structural features of these enzymes.  相似文献   

8.
9.
H Wu  S Roy  M Alami  BR Green  DA Campbell 《Plant physiology》2012,160(1):464-476
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.  相似文献   

10.
The zinc metalloenzyme carbonic anhydrase plays a critical role in inorganic carbon acquisition in marine diatoms, thus conferring on zinc a key role in oceanic carbon cycling. As a first step in determining the location and function of carbonic anhydrase (CA) in Bacillariophyceae, we purified and partially sequenced CA from T. weissflogii (Gru) Fryxell et Hasle (TWCA1) and cloned the corresponding cDNA (twca1). The twca1 sequence is different from other known algal carbonic anhydrase genes, and encodes a protein of roughly 34 kDa. The amino terminal amino acids sequenced from purified TWCA1 are 72 residues downstream of the putative starting methionine predicted by twca1. This difference may be due to the presence of a short-lived signal sequence designed to guide the enzyme to the correct cellular location. The absence of any homology between TWCA1 and previously sequenced CAs from Chlorophyceae may indicate either convergent evolution or that carbon acquisition represents a fundamental physiological difference among algal phyla.  相似文献   

11.
The thylakoid membrane of photoautotrophic organisms contains the main components of the photosynthetic electron transport chain. Detailed proteome maps of the thylakoid protein complexes of two marine diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, were created by means of two-dimensional blue native (BN)/SDS-PAGE coupled with mass spectrometry analysis. One novel diatom-specific photosystem I (PS I)-associated protein was identified. A second plastid-targeted protein with possible PS I interaction was discovered to be restricted to the centric diatom species T. pseudonana. PGR5/PGRL homologues were found to be the only protein components of PS I-mediated cyclic electron transport common to both species. For the first time, evidence for a possible PS I localization of LI818-like light harvesting proteins (Lhcx) is presented. This study also advances the current knowledge on the light harvesting antenna composition and Lhcx expression in T. pseudonana on the protein level and presents details on the molecular distribution of Lhcx in diatoms. Above mentioned proteins and several others with unknown function provide a broad basis for further mutagenesis analysis, aiming toward further understanding of the composition and function of the photosynthetic apparatus of diatoms. The proteomics approach of this study further served as a tool to confirm and improve genome-derived protein models.  相似文献   

12.
13.
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light.  相似文献   

14.
15.
16.
17.
18.
Five marine phytoplankton species (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum, Monochrysis lutheri, and Dunaliella tertiolecta) were grown in enriched laboratory continuous cultures and natural populations were mass cultured outdoors for 16 months. Competition among the species was shown to be highly dependent on temperature, although the actual production of plant organic matter at the low growth rates used was relatively independent of this variable. Control of marine species in mass cultures does not appear economically feasible, but this drawback may be overcome by selecting herbivorous shellfish that are capable of assimilating those temperature-dependent phytoplankton species dominating in a particular locale.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号