首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under negative ionization conditions, nominal mass calibration of the fast bombardment high field mass spectrometer and data system was accomplished using cesium iodide/glycerol as a reference. Mass calibration at --8 kV accelerating potential extends from m/z 387 to m/z 2170 using xenon fast atoms. Negative xenon FAB mass spectra for human angiotensin I and human gastrin I complement their positive fast atom bombardment spectra. Negative xenon fast atom bombardment spectra of underivatized peptides exhibit molecular proton-abstracted ion envelopes and structurally significant fragment ions. Peptide mixture analysis under negative xenon fast atom bombardment reveals peptide molecular ion envelopes of higher relative intensities than under positive xenon fast atom bombardment.  相似文献   

2.
Applicability of negative ion fast atom bombardment (FAB)-tandem mass spectrometry (MS/MS) was examined in trace mixture analyses and structural assignments of some isoprenoid diphosphates. Negative ion FAB-MS spectra using a glycerol matrix of these isoprenoid diphosphates showed predominantly molecular ions (M-H)- together with fragment ions at m/z 177 (H3P2O7)-, 176 (H2P2O7)-, 159 (HP2O6)-, and 79 (PO3)- which were characteristic of the diphosphate ester moiety. The molecular ions did not overlap with peaks arising from any impurities even when crude sample such as butanol extracts from enzymatic reaction mixtures were directly analyzed without any purification. Moreover, collisionally activated dissociation spectra of the molecular ion showed many structurally significant fragment ions which enabled us to elucidate the structures of such irregular alkyl chain moieties as those having a homoisoprenoid skeleton or substituted structures. These studies indicate that negative ion FAB-MS/MS is a simple and useful technique for trace mixture analysis and structure elucidation of isoprenoid diphosphates.  相似文献   

3.
Arachidonic acid was converted to a series of hydroxyeicosatetraenoic acids (HETEs) by mixed human inflammatory cells following stimulation with the calcium ionophore A23187. HETEs were purified by a simple one-step extraction procedure followed by HPLC. The HPLC was coupled to a Finnigan quadrupole mass spectrometer using the now commercially available thermospray liquid chromatography-mass spectrometry interface. The HPLC eluant was monitored 'on line' by the mass spectrometer. Soft ionisation occurs, generating intense molecular ion species in the negative ion mode (M - H-:m/z 319) for each of the isomeric HETEs. The (M + H+ - H2O) ion at m/z 303 is the major species in the positive ion spectra of HETEs. Mass spectra were obtained on-line post-HPLC for HETEs formed by the human cells, and the HPLC-MS profile compared with that obtained from standards; species corresponding to the 11-, 9- and 5-HETEs were observed.  相似文献   

4.
Parallel analysis of platelet-activating factor (PAF) using chemical ionization gas chromatography-mass spectrometry after direct derivatization with pentafluorobenzoyl chloride (PFB) and heptafluorobutyric anhydride (HFB) provides a facile and highly sensitive means for detecting and elucidating the structure of the numerous alkyl-chain homologs of this acetylated phospholipid autacoid. In the present study, the PFB derivative was used for initial electron capture negative ion chemical ionization analysis of PAF candidate molecules in human PMN extracts of unknown composition. Subsequent pulsed positive ion/electron capture negative ion chemical ionization evaluation of the HFB derivative furnished a measure of the molecular weight from [MH]+ and yielded the required structural information from characteristic negative ions, in particular [M-(2HF + ketene)]- and [M-(HF + acetic acid)]-. These procedures easily permitted confirmation of the presence of C16:0-, C17:0-, C18:0-, and C18:1-AGEPC (acetyl glyceryl ether phosphocholine) in extracts of stimulated human PMN and also demonstrated that the C17:0- homolog was comprised of both straight-chain and branch-chain varieties.  相似文献   

5.
Scherl A  Tsai YS  Shaffer SA  Goodlett DR 《Proteomics》2008,8(14):2791-2797
Although mass spectrometers are capable of providing high mass accuracy data, assignment of true monoisotopic precursor ion mass is complicated during data-dependent ion selection for LC-MS/MS analysis of complex mixtures. The complication arises when chromatographic peak widths for a given analyte exceed the time required to acquire a precursor ion mass spectrum. The result is that many measured monoisotopic masses are misassigned due to calculation from a single mass spectrum with poor ion statistics based on only a fraction of the total available ions for a given analyte. Such data in turn produces errors in automated database searches, where precursor m/z value is one search parameter. We propose here a postacquisition approach to correct misassigned monoisotopic m/z values that involves peak detection over the entire elution profile and correction of the precursor ion monoisotopic mass. As a result of using this approach to reprocess shotgun proteomic data we increased peptide sequence assignments by 10% while reducing the estimated false positive ratio from 1 to 0.2%. We also show that 4% of the salvaged identifications may be accounted for by correction of mixed tandem mass spectra resulting from fragmentation of multiple peptides simultaneously, a situation which we refer to as accidental CID.  相似文献   

6.
We present a comprehensive, sensitive, and highly specific negative ion electrospray LC/MS method for identifying all structural classes of glucosinolates in crude plant extracts. The technique is based on the observation of simultaneous maxima in the abundances of the m/z 96 and 97 ions, generated by programmed cone voltage fragmentation, in the mass chromatogram. The abundance ratios lie in the range 1:2-1:4 ([m/z 96]/[m/z 97]). Examination of the corresponding full-scan mass spectra allows individual glucosinolates of all structural classes to be identified rapidly and with confidence. The use of linearly programmed cone voltage fragmentation enhances characteristic fragment ions without compromising the abundance of the analytically important [M - H]- ion and its associated (and analytically useful) sulfur isotope peaks. Detection limits are in the low nanogram range for full-scan, programmed cone voltage spectra. Comparison of the technique with LC/MS/MS methods (product ion, precursor ion, and constant neutral loss scans) has shown that the sensitivity and selectivity of the programmed cone voltage method is superior. Data obtained on a variety of plant extracts confirmed that the methodology was robust and reliable.  相似文献   

7.
A simple, reliable and sensitive liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for quantification of N-acetylglucosamine in human plasma. Plasma samples were pretreated with acetonitrile for protein precipitation. The chromatographic separation was performed on Hypersil Silica column (150mmx2mm, 5microm). The deprotonated analyte ion was detected in negative ionization mode by multiple reaction monitoring mode. The mass transition pairs of m/z 220.3-->118.9 and m/z 226.4-->123.2 were used to detect N-acetylglucosamine and internal standard 13C6-N-acetylglucosamine, respectively. The assay exhibited a linear range from 20 to 1280ng/ml for N-acetylglucosamine in human plasma. Acceptable precision and accuracy were obtained for concentrations of the calibration standard and quality control. The validated method was successfully applied to analyze human plasma samples in a pharmacokinetic study.  相似文献   

8.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

9.
Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.  相似文献   

10.
A gas chromatographic mass spectrometric assay for clonidine in plasma with a detection limit of a few picograms per ml was required. The p-trifluoromethylbenzyl, pentafluorobenzyl and pentafluorobenzoyl derivatives of clonidine were synthesized and the electron capture negative ion chemical ionization mass spectra of these compounds show extensive fragmentation with prominent ions at m/z 35 and 37 due to the two chlorine atoms in the clonidine molecule. Selected ion monitoring of specific high mass ions in these mass spectra indicated that the required sensitivity could not be obtained with these derivatives. Several bis(trifluoromethyl)pyrimidines were synthesized and these compounds were found to give an intense negative ion current under conditions of resonance electron capture. Consequently, a derivative of clonidine containing a bis(trifluoromethyl)aryl group was synthesized by reacting the drug with 3,5-bis(trifluoromethyl)benzoyl chloride. The negative ion mass spectrum of the reaction product has a base peak at m/z 673 and, when this ion is specifically monitored, an amount of derivative equivalent to 1 picogram of clonidine can be detected. This allowed the development of an assay for clonidine in plasma with a precision of 8% (SD) at 50 pg ml-1, 22% (SD) at 20 pg ml-1 and a lower limit for quantitative determination of 10 pg ml-1. Plasma concentrations of clonidine in 10 subjects given a single 50 micrograms oral dose are reported.  相似文献   

11.
Thin layer chromatography of lysosulfatide showed anomalous Rf-values in contrast with such lysosphingolipids as glucopsychosine and galactopsychosine with neutral, acidic, and alkaline developing solvents. This was thought to be due to the presence of oppositely charged sulfate and amino groups in the lysosulfatide. In the negative mode of fast atom bombardment mass spectrometry, the lysosulfatide showed the pseudo molecular ion (M-H)- peak at m/z 540 and sulfate ion peak at m/z 97, whereas in the positive mode, it showed not only the pseudo molecular ion (M+H)+ peak at m/z 542, but also the major peaks of protonated psychosine at m/z 462 and fragment ions of dehydrated sphingosine at m/z 282 and 264, 13C-NMR signals of all carbons of lysosulfatide were determined by using distortionless enhancement by polarization transfer. The difference in chemical shifts of ring carbons of galactose residue between lysosulfatide and galactopsychosine was largest at C-3 (downfield shift), thereby indicating the location of the sulfate group to be at C-3 of galactose. This conclusion is supported by the 1H-NMR spectra of the lysosulfatide and galactopsychosine. Thus, the chemical structure of lysosulfatide was confirmed by fast atom bombardment mass spectrometry and 13C- and 1H-NMR spectroscopy. Furthermore, 13C-NMR signals of C-1 to C-5 of the sphingosine moiety showed significantly different chemical shifts between the lysosulfatide and galactopsychosine. These differences suggested that C-1 to C-5 of sphingosine might be influenced by intramolecular or intermolecular interaction between the sulfate group of the galactose residue and the amino group of sphingosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5'-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M + H - H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M - H]-, a glycerol (G) adduct ion at m/z 457 [M - H + G]- and a dimer ion at m/z 731 [2M - H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M - H]- and cationized species at m/z 626 [M + Na - 2H]- and 648 [M + 2Na - 3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M - H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M - H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M - H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.  相似文献   

13.
A gas chromatographic mass spectrometric assay for (N-dicyclopropylmethyl) amino-2-oxazoline in plasma with a detection limit of 0.1 ng ml-1 was required. Various fluoroaryl derivatives of this compound (code name S3341) were synthesized and their positive ion chemical ionization and electron capture negative ion chemical ionization mass spectra recorded. While fluorobenzyl derivatives of S3341 could be made by heating with the requisite benzyl bromide and diisopropylethylamine in acetonitrile, initial efforts to synthesize corresponding fluorobenzoyl derivatives using a benzoyl chloride in dry ethyl acetate at 60 degrees C were unsuccessful. Mass spectral data indicated that only a fragment of the oxazoline ring was retained in the reaction product and that an N-(2-chloroethyl)benzamide was formed. However, when diisopropylethylamine was included in the reaction mixture, a benzoyl derivative of the complete molecule was obtained. The mechanisms of these reactions are discussed. The negative ion mass spectrum of the 3,5-bistrifluoromethylbenzoyl derivative of S3341 has a base peak at m/z 420 (the molecular ion) and, when this ion is specifically monitored, an amount of derivative equivalent to 1 pg of S3341 can be detected. This allowed the development of an assay for S3341 in plasma with a precision of 9% (SD) at 0.2 ng ml-1 and a lower limit for quantitative determination of 0.1 ng ml-1.  相似文献   

14.
A liquid chromatography tandem mass spectrometry assay for serum testosterone (T) and trideuterated testosterone (d(3)T) was developed in order to support clinical research studies that determine the pharmacokinetics, production rate, and clearance of testosterone by administration of trideuterated testosterone. After adding 19-nortestosterone as the internal standard (I.S.), sodium acetate buffer, and ether, to a serum aliquot, the mixture was shaken and centrifuged, and the ether was dried. The extract was reconstituted in methanol and 15 microl was injected into a liquid chromatograph equipped with an autosampler and Applied Biosystems-Sciex API 300 triple quadrupole mass spectrometer operated in the positive ion mode. T, d(3)T, and I.S. were monitored with transitions m/z 289 to m/z 97, m/z 292 to m/z 97, and m/z 275 to m/z 109, respectively. The two calibration curves were linear over the entire measurement range of 0-20 ng/ml for T and 0-2.0 ng/ml for d(3)T. The LOQs for T and d(3)T were 0.5 ng/ml and 0.05 ng/ml. The recoveries for T and d(3)T were 91.5 and 96.4%. For T at 1.25 ng/ml and 4.0 ng/ml, the intra-day precision (RSD, %) was 3.9 and 4.3% and intra-day accuracy 0.01 and 4.5%, respectively. The inter-day precision at these levels was 5.3 and 5.4% and inter-day accuracy was 1.9 and 0.3%. For d(3)T at 0.125 ng/ml and 0.4 ng/ml, the intra-day precision (RSD, %) was 2.8 and 8.3% and intra-day accuracy was 1.8 and 5.6%. The inter-day precision at these levels was 10.0 and 7.6% and inter-day accuracy was 5.7 and 3.4%. The concentrations of T in the 38 healthy subjects ranged from 2.5 to 14.0 ng/ml (mean 6.2 ng/ml).  相似文献   

15.
Derivatization of 4-hydroxyproline (Hyp) in collagen using trifluoroacetylation and methanol esterification produces two derivatives when analyzed by gas chromatography/mass spectrometry (GC/MS). The diacyl derivative N,O-bis(trifluoroacetyl)-4-hydroxy-L-proline methyl ester (N,O-TFA-Hyp) formed in this manner has a shorter retention time and different fragmentation pattern by GC/MS as compared to the slower eluting monoacetylated species N-trifluoroacetyl-4-hydroxy-L-proline methyl ester (N-TFA-Hyp). By selected ion monitoring of the appropriate ions of either N,O-TFA-Hyp (m/z 164, 278) or N-TFA-Hyp (m/z 164, 182) efficient quantitation of Hyp in collagen is possible within the broad range of 5-1000 ng with a lower limit of detection of 0.5 ng per injection. Measurement of 18O2 incorporation into collagen is possible by selected ion monitoring of the m/z 182 ion formed only from the monoacetylated derivative, N-TFA-Hyp, produced by methanol solvolysis of the N,O-TFA-Hyp derivative, as proposed herein.  相似文献   

16.
A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of zolmitriptan was developed and validated over the linearity range 0.05-30 ng/ml with 0.5 ml of plasma using diphenhydramine as the internal standard. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring (SRM) mode using the atmospheric pressure chemical ionization (APCI) technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitrile-water-formic acid (70:30:0.5), at a flow rate of 0.5 ml/min. In positive mode, zolmitriptan produced a protonated precursor ion at m/z 288 and a corresponding product ion at m/z 58. And internal standard produced a protonated precursor ion at m/z 256 and a corresponding product ion at m/z 167. The inter- and intra-day precision (%R.S.D.) were less than 8.5% and accuracy (%error) was less than -2.5%. The method had a lower limit of quantification of 0.05 ng/ml for zolmitriptan, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokinetic study of zolmitriptan after an oral administration of 5 mg zolmitriptan to 20 healthy volunteers.  相似文献   

17.
A simple, sensitive and specific liquid chromatography-tandem mass spectrometry method (LC-MS-MS) had been developed and validated for the quantitation of astragaloside IV (AGS-IV)-an active constituent of Radix Astragali in rat plasma. Assay method was developed by a series of operations described as below. The plasma proteins were precipitated with acetonitrile and digoxin was used as the internal standard (I.S.). The sample solution containing astragaloside IV and the I.S. were obtained and subsequently injected into a LC-MS-MS system following by a gradient elution at a slow flow rate combined with a valve diversion during the liquid chromatography. Chromatographic separation was achieved on a C4 (2.1 mmx10 mm) column with a gradient mobile phase comprised of 90% methanol in water and 10 mM ammonium acetate buffer. The analytes were detected with a PE Sciex API 3000 mass spectrometer using turbo ion spray with positive ionization. Ions monitored in the multiple reaction-monitoring (MRM) modes were m/z 785.5 (precursor ion) to m/z 143.2 (product ion) for AGS-IV and m/z 781.2 (precursor ion) to m/z 243.3 (product ion) for digoxin (I.S.). The method was validated over a linear range of 1-1000 ng/ml. The low limit of quantitation was 1.0 ng/ml. Results from a 3-day validation study demonstrated that the developed method possessed good precision (CV% values were between 5.9 and 7.6%) and accuracy (96.5-102.1%) across the calibration range. The recoveries were 91 and 90% for astragaloside IV and I.S., and no significant matrix effects were observed. QC samples were stable when kept at room temperature for 4 h, at -20 degrees C for 4 weeks, and after three freeze/thaw cycles.  相似文献   

18.
A sensitive and specific HPLC-MS/MS method was developed for the analysis of mycophenolic acid glucuronide (MPAG) in incubations with human liver microsomes. Incubation samples were processed by protein precipitation with acetonitrile. MPAG and the internal standard phenolphthalein glucuronide were chromatographed on a C18 Synergi Fusion-RP column (100 mm x 2 mm, 4 microm) using gradient elution with a mixture of 1mM acetic acid in deionized water and 1mM acetic acid in acetonitrile at a flow rate of 0.22 mL/min. The mass spectrometer was operated with negative electrospray ionization and analysis was carried out in the single reaction monitoring (SRM) mode using the mass transitions of m/z 495-->319 and m/z 493-->175 for MPAG and phenolphthalein glucuronide, respectively. The MPAG calibration curve was linear over the concentration range of 1.0-20 microM. The within-day and between-day relative standard deviations ranged from 1.1 to 7.9% and accuracy was within 8%. The simple and reproducible method is suitable for measuring mycophenolic acid glucuronidation in microsomal incubations.  相似文献   

19.
Indole 3-acetic acid (IAA) was analyzed in apple, orange, and prune tissue by GC-MS by monitoring the protonated molecular ion of its methyl ester at mass to charge ratio (m/z) 190 together with the major fragment ion at m/z 130 and the corresponding ions from the methyl esters of either [2H4]IAA (m/z 194, 134) or [2H5]IAA (m/z 195, 135). Abscisic acid (ABA) was analyzed by monitoring the major fragment ions of its methyl ester at m/z 261 and m/z 247 and the corresponding ions from the methyl ester of [2H3]ABA (m/z 264, 250). Detection limits for IAA and ABA were 1 and 10 picograms, respectively using standards and 1 nanogram per gram dry weight for both phytohormones in plant tissue.  相似文献   

20.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号