首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choi G  Ha NC  Kim MS  Hong BH  Oh BH  Choi KY 《Biochemistry》2001,40(23):6828-6835
Delta5-3-ketosteroid isomerase (KSI) from Pseudomonas putida Biotype B catalyzes the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers via a dienolate intermediate. Two electrophilic catalysts, Tyr-14 and Asp-99, are involved in a hydrogen bond network that comprises Asp-99 Odelta2...O of Wat504...Tyr-14 Oeta...Tyr-55 Oeta.Tyr-30 Oeta in the active site of P. putida KSI. Even though neither Tyr-30 nor Tyr-55 plays an essential role in catalysis by the KSI, the catalytic activity of Y14F could be increased ca. 26-51-fold by the additional Y30F and/or Y55F mutation in the hydrogen bond network. To identify the structural basis for the pseudoreversion in the KSI, crystal structures of Y14F and Y14F/Y30F/Y55F have been determined at 1.8 and 2.0 A resolution, respectively. Comparisons of the two structures near the catalytic center indicate that the hydrogen bond between Asp-99 Odelta2 and C3-O of the steroid, which is perturbed by the Y14F mutation, can be partially restored to that in the wild-type enzyme by the additional Y30F/Y55F mutations. The kinetic parameters of the tyrosine mutants with the additional D99N or D99L mutation also support the idea that Asp-99 contributes to catalysis more efficiently in Y14F/Y30F/Y55F than in Y14F. In contrast to the catalytic mechanism of Y14F, the C4 proton of the steroid substrate was found to be transferred to the C6 position in Y14F/Y30F/Y55F with little exchange of the substrate 4beta-proton with a solvent deuterium based on the reaction rate in D2O. Taken together, our findings strongly suggest that the improvement in the catalytic activity of Y14F by the additional Y30F/Y55F mutations is due to the changes in the structural integrity at the catalytic site and the resulting restoration of the proton-transfer mechanism in Y14F/Y30F/Y55F.  相似文献   

2.
3-Oxo-Delta(5)-steroid isomerase (KSI) catalyzes the isomerization of a variety of 3-oxo-Delta(5)-steroids to their conjugated Delta(4) isomers. The mechanism involves sequential enolization and ketonization, with Asp-38 acting to transfer a proton from C-4 to C-6 through a dienol(ate) intermediate. We have previously proposed that this intermediate is anionic, with stabilization provided from direct hydrogen bonding from Tyr-14 and Asp-99 to the oxygen of the steroid. In this work, we analyze the binding of substituted 2-naphthols, which are analogues of the intermediate dienol, to the D38E KSI mutant and the corresponding double mutants lacking one of the two electrophilic groups (D38E/Y14F and D38E/D99A). The binding of these naphthols to the mutant KSIs at pH 7 is described by the modified Bronsted equation: log K(D) = alpha(pK(a)) + constant, where K(D) is the dissociation constant of the complex. The high value of alpha for D38E (alpha = 0.87 +/- 0.06) indicates that the negative charge in these D38E-naphthol complexes is localized almost exclusively on the bound ligand. In contrast, values of alpha for the double mutants (alpha = 0.28 +/- 0.02 for D38E/Y14F and alpha = 0.25 +/- 0.02 for D38E/D99A) are consistent with very little negative charge on the oxygen of the bound naphthol. Ultraviolet spectra of 5-nitro-2-naphthol and the fluorescence spectra of equilenin bound to these mutants support this interpretation. Extrapolation of these results to the intermediate in the catalytic reaction suggests that for the reaction with D38E, the intermediate is a negatively charged dienolate with hydrogen bonding from both Tyr-14 and Asp-99. Removal of either one of these H-bond donors (Tyr-14 or Asp-99) causes destabilization of the anion and results in a dienol enzyme-intermediate complex rather than a dienolate.  相似文献   

3.
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) of Pseudomonas testosteroni promotes the highly efficient isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by means of a direct and stereospecific transfer of the 4 beta-proton to the 6 beta-position, via an enolic intermediate. An acidic residue responsible for the protonation of the 3-carbonyl function of the steroid and a basic group concerned with the proton transfer have been implicated in the catalytic mechanism. Recent NMR studies with a nitroxide spin-labeled substrate analogue have allowed positioning of the steroid into the 2.5-A X-ray crystal structure of the enzyme [Kuliopulos, A., Westbrook, E.M., Talalay, P., & Mildvan, A.S. (1987) Biochemistry 26, 3927-3937], thereby corroborating the approximate location of the steroid binding site deduced from a difference Fourier X-ray diffraction map of the 4-(acetoxymercuri)estradiol-isomerase complex [Westbrook, E.M., Piro, O.E., & Sigler, P.B. (1984) J. Biol. Chem. 259, 9096-9103]. The steroid lies in a hydrophobic cavity near Asp-38, Tyr-14, and Tyr-55. In order to assess the role of these amino acid residues in catalysis, the gene for isomerase was cloned, sequenced, and overexpressed in Escherichia coli [Kuliopulos, A., Shortle, D., & Talalay, P. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8893-8897], and the following mutants were prepared: Asp-38 to asparagine (D38N) and Tyr-14 and Tyr-55 to phenylalanine (Y14F and Y55F, respectively). The kcat value of the D38N mutant enzyme is 10(5.6)-fold lower than that of the wild-type enzyme, suggesting that Asp-38 functions as the base which abstracts the 4 beta-proton of the steroid in the rate-limiting step. Threefold lower Km values in all mutants indicate tighter binding of the substrate to the more hydrophobic sites. In comparison with the wild-type enzyme, the Y55F mutant shows only a 4-fold decrease in kcat while the Y14F mutant shows a 10(4.7)-fold decrease in kcat, suggesting that Tyr-14 is the general acid. The red shift of the ultraviolet absorption maximum of the competitive inhibitor 19-nortestosterone from 248 to 258-260 nm, which occurs upon binding to the wild-type enzyme [Wang, S.F., Kawahara, F.S., & Talalay, P. (1963) J. Biol. Chem. 238, 576-585], is mimicked in strong acid. This spectral shift was also observed with the D38N and Y55F mutants, but not on binding of the steroid to the Y14F mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Hénot F  Pollack RM 《Biochemistry》2000,39(12):3351-3359
3-oxo-Delta(5)-steroid isomerase (KSI) from Comamonas (Pseudomonas) testosteroni catalyzes the isomerization of beta,gamma-unsaturated 3-oxosteroids to their conjugated isomers through an intermediate dienolate. Residue Asp-38 (pK(a) 4.57) acts as a base to abstract a proton from C-4 of the substrate to form an intermediate dienolate, which is then reprotonated on C-6. Both Tyr-14 (pK(a) 11.6) and Asp-99 (pK(a) >/= 9.5) function as hydrogen-bond donors to O-3 of the steroid, helping to stabilize the transition states. Mutation of the active-site base Asp-38 to the weakly basic Asn (D38N) has previously been shown to result in a >10(8)-fold decrease of catalytic activity. In this work, we describe the preparation and kinetic analysis of the Ala-38 (D38A) mutant. Unexpectedly, D38A has a catalytic turnover number (k(cat)) that is ca. 10(6)-fold greater than the value for D38N and only about 140-fold less than that for wild type. Kinetic studies as a function of pH show that D38A-catalyzed isomerization involves two groups, with pK(a) values of 4.2 and 10.4, respectively, in the free enzyme, which are assigned to Asp-99 and either Tyr-14 or Tyr-55. A mechanism for D38A is proposed in which Asp-99 is recruited as the catalytic base, with stabilization of the intermediate dienolate ion and the flanking transition states provided by hydrogen bonding from both Tyr-14 and Tyr-55. This mechanism is supported by the lack of detectable activity of the D38A/D99N, D38A/Y14F, and D38A/Y55F double mutants.  相似文献   

5.
Site-directed mutagenesis was used to probe the structural and functional roles of two highly conserved residues, Tyr-52 and Tyr-73, in interfacial catalysis by bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli). According to crystal structures, the side chains of these two active site residues form H-bonds with the carboxylate of the catalytic residue Asp-99. Replacement of either or both Tyr residues by Phe resulted in only very small changes in catalytic rates, which suggests that the hydrogen bonds are not essential for catalysis by PLA2. Substitution of either Tyr residue by nonaromatic amino acids resulted in substantial decreases in the apparent kcat toward 1,2-dioctanoyl-sn-glycero-3-phosphocholine (DC8PC) micelles and the v(o) (turnover number at maximal substrate concentration, i.e., mole fraction = 1) toward 1,2-dimyristoyl-sn-glycero-3-phosphomethanol (DC14PM) vesicles in scooting mode kinetics [Berg, O. G., Yu, B.-Z., Rogers, J., & Jain, M. K. (1991) Biochemistry 30, 7283-7297]. The Y52V mutant was further analyzed in detail by scooting mode kinetics: the E to E* equilibrium was examined by fluorescence; the dissociation constants of E*S, E*P, and E*I (KS*, KP*, and KI*, respectively) in the presence of Ca2+ were measured by protection of histidine-48 modification and by difference UV spectroscopy; the Michaelis constant KM* was calculated from initial rates of hydrolysis in the absence and presence of competitive inhibitors; and the turnover number under saturating conditions (kcat, which is a theoretical value since the enzyme may not be saturated at the interface) was calculated from the vo and KM* values. The results indicated little perturbation in the interfacial binding step (E to E*) but ca. 10-fold increases in KS*, KP*, KI*, and KM* and a less than 10-fold decrease in kcat. Such changes in the function of Y52V are not due to global conformational changes since the proton NMR properties of Y52V closely resemble those of wild-type PLA2; instead, it is likely to be caused by perturbed enzyme-substrate interactions at the active site. Tyr-73 appears to play an important structural role. The conformational stability of all Tyr-73 mutants decreased by 4-5 kcal/mol relative to that of the wild-type PLA2. The proton NMR properties of Y73A suggested significant conformational changes and substantially increased conformational flexibility. These detailed structural and functional analyses represent a major advancement in the structure-function study of an enzyme involved in interfacial catalysis.  相似文献   

6.
L A Xue  P Talalay  A S Mildvan 《Biochemistry》1990,29(32):7491-7500
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position using Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149]. On deuteration of the 4 beta-position (97.0%) of the substrate, kcat(H)/kcat(4 beta-D) is 6.1 in H2O and 6.3 in D2O. The solvent isotope effect, kcat(H2O)/kcat(D2O), is 1.6 for both the 4 beta-H and 4 beta-D substrates. Mutation of Tyr-55 to Phe lowers kcat 4.3-fold; kcat(H)/kcat/4 beta-D) is 5.3 in H2O and 5.9 in D2O, and kcat(H2O)/kcat(D2O) with the 4 beta-H and 4 beta-D substrates is 1.5 and 1.7, respectively, indicating concerted general acid-base catalysis in either the enolization or the ketonization step of both the wild-type and the Tyr-55----Phe (Y55F) mutant enzymes. An additional slow step occurs with the Y55F mutant. Smaller isotope effects on Km are used to estimate individual rate constants in the kinetic schemes of both enzymes. On deuteration of the 4 alpha-position (88.6%) of the substrate, the secondary isotope effect on kcat/Km corrected for composition is 1.11 +/- 0.02 with the wild-type enzyme and 1.12 +/- 0.02 with the Y55F mutant. These effects decrease to 1.06 +/- 0.01 and 1.07 +/- 0.01, respectively, when the 4 beta-position is also deuterated, thereby establishing these to be kinetic (rather than equilibrium) secondary isotope effects and to involve a proton-tunneling contribution. Deuteration of the 6-position of the substrate (92.0%) produces no kinetic isotope effects on kcat/Km with either the wild-type (1.00 +/- 0.01) or the Y55F mutant (1.01 +/- 0.01) enzyme. Since a change in hybridization from sp3 to sp2 occurs at C-4 only during enolization of the substrate and a change in hybridization at C-6 from sp2 to sp3 occurs only during reketonization of the dienol intermediate, enolization of the substrate constitutes the concerted rate-limiting step. Concerted enolization is consistent with the right angle or antarafacial orientations of Tyr-14 and Asp-38 with respect to the enzyme-bound substrate and with the additive effects on kcat of mutation of these catalytic residues [Kuliopulos, A., Talalay, P., & Mildvan, A. S. (1990) Biophys. J. 57, 39a].  相似文献   

7.
Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ5-3-ketosteroid to its conjugated Δ4-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1–11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7–2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.  相似文献   

8.
Beta-galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low kcat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-beta-galactosidase was inactivated in an "additive" manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-beta-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent beta-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

9.
Kim DH  Jang DS  Nam GH  Choi G  Kim JS  Ha NC  Kim MS  Oh BH  Choi KY 《Biochemistry》2000,39(16):4581-4589
Delta(5)-3-Ketosteroid isomerase from Pseudomonas putida biotype B is one of the most proficient enzymes catalyzing an allylic isomerization reaction at rates comparable to the diffusion limit. The hydrogen-bond network (Asp99... Wat504...Tyr14...Tyr55...Tyr30) which links the two catalytic residues, Tyr14 and Asp99, to Tyr30, Tyr55, and a water molecule in the highly apolar active site has been characterized in an effort to identify its roles in function and stability. The DeltaG(U)(H2O) determined from equilibrium unfolding experiments reveals that the elimination of the hydroxyl group of Tyr14 or Tyr55 or the replacement of Asp99 with leucine results in a loss of conformational stability of 3.5-4.4 kcal/mol, suggesting that the hydrogen bonds of Tyr14, Tyr55, and Asp99 contribute significantly to stability. While decreasing the stability by about 6.5-7.9 kcal/mol, the Y55F/D99L or Y30F/D99L double mutation also reduced activity significantly, exhibiting a synergistic effect on k(cat) relative to the respective single mutations. These results indicate that the hydrogen-bond network is important for both stability and function. Additionally, they suggest that Tyr14 cannot function efficiently alone without additional support from the hydrogen bonds of Tyr55 and Asp99. The crystal structure of Y55F as determined at 1.9 A resolution shows that Tyr14 OH undergoes an alteration in orientation to form a new hydrogen bond with Tyr30. This observation supports the role of Tyr55 OH in positioning Tyr14 properly to optimize the hydrogen bond between Tyr14 and C3-O of the steroid substrate. No significant structural changes were observed in the crystal structures of Y30F and Y30F/Y55F, which allowed us to estimate approximately the interaction energies mediated by the hydrogen bonds Tyr30...Tyr55 and Tyr14...Tyr55. Taken together, our results demonstrate that the hydrogen-bond network provides the structural support that is needed for the enzyme to maintain the active-site geometry optimized for both function and stability.  相似文献   

10.
delta 5-3-Ketosteroid isomerase (KSI: EC 5.3.3.1) of Pseudomonas testosteroni catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by the stereospecific transfer of the steroid 4 beta-proton to the 6 beta-position, using Tyr-14 as a general acid and Asp-38 as a base. Ultraviolet resonance Raman (UVRR) spectra have been obtained for the catalytically active double mutant Y55F + Y88F, which retains Tyr-14 as the only tyrosine residue (referred to as the Y14(0) mutant), and the Y14F mutant, which has 50,000-fold lower activity. The UVRR results establish that binding of the product analog and competitive inhibitors 19-nortestosterone or 4-fluoro-19-nortestosterone to the Y14(0) mutant does not result in the formation of deprotonated Tyr-14. The UVRR spectra of the steroid inhibitors show large decreases in the vinyl and carbonyl stretching frequencies on binding to the Y14(0) enzyme but not on binding to the Y14F enzyme. These changes cannot be mimicked by protonation of the steroids. For 19-nortestosterone, the vinyl and carbonyl stretching frequencies shift down (with respect to the values in aqueous solution) by 18 and 27 cm-1, respectively, on binding to Y14(0) KSI. It is proposed that the changes in the steroid resonance Raman spectrum arise from polarization of the enone moiety via the close proximity of the charged Asp-38 side chain to the vinyl group and the directional hydrogen bond between Tyr-14 and the 3-carbonyl oxygen of the steroid enone. The 230-nm-excited UVRR spectra do not, however, show changes that are characteristic of strong hydrogen bonding from the tyrosine hydrogen. It is proposed that this hydrogen bonding is compensated by a second hydrogen bond to the Tyr-14 oxygen from another protein residue. UVRR spectra of the Y14(0) enzyme obtained using 200 nm excitation show enhancement of the amide II and S Raman bands. The secondary structure of KSI was estimated from the amide II and S intensities and was found to be low in alpha-helical structure. The alpha-helix content was estimated to be in the range of 0-25% (i.e., 10 +/- 15%).  相似文献   

11.
Beta-oxidation of acyl-CoAs in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Amino acid sequence alignment of the 2-enoyl-CoA hydratase 2 domain in human MFE-2 with other MFE-2s reveals conserved protic residues: Tyr-347, Glu-366, Asp-370, His-406, Glu-408, Tyr-410, Asp-490, Tyr-505, Asp-510, His-515, Asp-517, and His-532. To investigate their potential roles in catalysis, each residue was replaced by alanine in site-directed mutagenesis, and the resulting constructs were tested for complementation in a yeast. After additional screening, the wild type and noncomplementing E366A and D510A variants were expressed and characterized. The purified proteins have similar secondary structural elements, with the same subunit composition. The E366A variant had a k(cat)/K(m) value 100 times lower than that of the wild type MFE-2 at pH 5, whereas the D510A variant was inactive. Asp-510 was imbedded in a novel hydratase 2 motif found in the hydratase 2 proteins. The data show that the hydratase 2 reaction catalyzed by MFE-2 requires two protic residues, Glu-366 and Asp-510, suggesting that their catalytic role may be equivalent to that of the two catalytic residues of hydratase 1.  相似文献   

12.
A Kuliopulos  P Talalay  A S Mildvan 《Biochemistry》1990,29(44):10271-10280
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by a conservative tautomeric transfer of the 4 beta-proton to the 6 beta-position with Tyr-14 as a general acid and Asp-38 as a general base [Kuliopulos, A., Mildvan, A. S., Shortle, D., & Talalay, P. (1989) Biochemistry 28, 149-159]. Primary, secondary, and combined deuterium kinetic isotope effects establish concerted substrate enolization to be the rate-limiting step with the wild-type enzyme [Xue, L., Talalay, P., & Mildvan, A. S. (1990) Biochemistry 29, 7491-7500]. The product of the fractional kcat values resulting from the Y14F mutation (10(-4.7)) and the D38N mutation (10(-5.6)) is comparable (10(-10.3)) to that of the double mutant Y14F + D38N (less than or equal to 10(-10.4)) which is completely inactive. Hence, the combined effects are either additive or synergistic. Quantitatively, similar effects of the two mutations on kcat/KM are found in the double mutant. Despite its inactivity, the Y14F + D38N double mutant forms crystals indistinguishable in form from those of the wild-type enzyme, tightly binds steroid substrates and substrate analogues, and immobilizes a spin-labeled steroid in an orientation indistinguishable from that found in the wild-type enzyme, indicating that the double mutant is otherwise largely intact. It is concluded that the total enzymatic activity of ketosteroid isomerase probably results from the independent and concerted functioning of Tyr-14 and Asp-38 in the rate-limiting enolization step, in accord with the perpendicular or antarafacial orientation of these two residues with respect to the enzyme-bound substrate. Synergistic effects of mutating two residues on kcat and on kcat/KM of enzyme-catalyzed multistep reactions are shown, theoretically, to occur when both residues act independently in the same step, and simple additivity occurs when this step is rate-limiting. Other conditions for additivity of the effects of mutations of kcat and kcat/KM are theoretically explored.  相似文献   

13.
β-Galactosidases with single substitutions for Tyr-503, Glu-461, and Glu-537 and with double substitutions for Tyr-503 and either Glu-461 or Glu-537 were constructed. Control experiments showed that the very low k cat values obtained for the double-substituted enzymes were not a result of contamination, reversion, or nonactive site activity catalyzed on the surface of the proteins. Circular dichroism studies showed that the structures of the enzymes were intact. E461Q/Y503F-β-galactosidase was inactivated in an “additive” manner. This indicated that Glu-461 and Tyr-503 act independently in catalysis. Because these residues are at opposite sides of the active site and act in different steps, this is expected. E537D/Y503F-β-galactosidase was only inactivated a few-fold more than the most inactive of its two single-substituted constituent β-galactosidases. This showed that Glu-537 and Tyr-503 interact cooperatively on the same step. This correlates well with the proposed role of Tyr-503 as an acid catalyst for the breakage of the covalent bond between Glu-537 and galactose.  相似文献   

14.
To clarify the functional role of Tyr-42(C7) alpha, which forms a hydrogen bond with Asp-99(G1) beta at the alpha 1-beta 2 interface of human deoxyhaemoglobin, we engineered two artificial mutant haemoglobins (Hb), in which Tyr-42 alpha was replaced by Phe (Hb Phe-42 alpha) or His (Hb His-42 alpha), and investigated their oxygen binding properties together with structural consequences of the mutations by using various spectroscopic probes. Like most of the natural Asp-99 beta mutants, Hb Phe-42 alpha showed a markedly increased oxygen affinity, a reduced Bohr effect and diminished co-operativity. Structural probes such as ultraviolet-region derivative and oxy-minus-deoxy difference spectra, resonance Raman scattering and proton nuclear magnetic resonance spectra indicate that, in Hb Phe-42 alpha, the deoxy T quaternary structure is highly destabilized and the strain imposed on the Fe-N epsilon (proximal His) bond is released, stabilizing the oxy tertiary structure. In contrast with Hb Phe-42 alpha, Hb His-42 alpha showed an intermediately impaired function and only moderate destabilization of the T-state, which can be explained by the formation of a new, weak hydrogen bond between His-42 alpha and Asp-99 beta. Spectroscopic data were consistent with this assumption. The present study proves that the hydrogen bond between Tyr-42 alpha and Asp-99 beta plays a key role in stabilizing the deoxy T structure and consequently in co-operative oxygen binding.  相似文献   

15.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

16.
The reaction catalyzed by delta 5-3-ketosteroid isomerase has been shown to occur via the concerted enolization of the delta 5-3-ketosteroid substrate to form a dienolic intermediate, brought about by Tyr-14, which hydrogen bonds to and protonates the 3-keto group, and Asp-38, which removes and axial (beta) proton from C-4 of the substrate, in the same rate-limiting step [Xue, L., Talalay, P., & Mildvan, A.S. (1990) Biochemistry 29, 7491-7500; Kuliopulos, A., Mildvan, A.S., Shortle, D., & Talalay, P. (1989) Biochemistry 26, 3927-3937]. Since the axial C-4 proton is removed by Asp-38 from above the substrate, a determination of the complete stereochemistry of this rapid, concerted enolization requires information on the direction of approach of Tyr-14 to the enzyme-bound steroid. The double mutant enzyme, Y55F + Y88F, which retains Tyr-14 as the sole Tyr residue, was prepared and showed only a 4.5-fold decrease in kcat (12,000 s-1) and a 3.6-fold decrease in KM (94 microM) for delta 5-androstene-3, 17,dione, in comparison with the wild-type enzyme. Deuteration of the aromatic rings of the 10 Phe residues further facilitated the assignment of the aromatic proton resonances of Tyr-14 in the 600-MHz TOCSY spectrum at 6.66 +/- 0.01 ppm (3,5H) and at 6.82 +/- 0.01 ppm (2,6H). Variation of the pH from 4.9 to 10.9 did not alter these shifts, indicating that the pKa of Tyr-14 exceeds 10.9. Resonances assigned to the three His residues titrated with pKa values very similar to those found with the wild-type enzyme. The binding of 19-nortestosterone, a product analogue and substrate of the reverse isomerase reaction, induced downfield shifts of -0.12 and -0.06 ppm of the 3,5-and 2,6-proton resonances of Tyr-14, respectively, possibly due to deshielding by the 3-keto group of the steroid, but also induced +0.29 to -0.41 ppm changes in the chemical shifts of 8 of the 10 Phe residues and smaller changes in 10 of the 12 ring-shifted methyl resonances, indicating a steroid-induced conformation change in the enzyme. NOESY spectra in H2O revealed strong negative Overhauser effects from the 3,5-proton resonance of Tyr-14 to the overlapping 2 alpha-, 2 beta-, or 6 beta-proton resonances of the bound steroid but no NOE's to the 4- or 6 alpha-protons of the steroid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The gene glpK, encoding glycerol kinase (GlpK) of Thermus aquaticus, has recently been identified. The protein encoded by glpK was found to have an unusually high identity of 81% with the sequence of GlpK from Bacillus subtilis. Three residues (Arg-82, Glu-83, and Asp-244) of T. aquaticus GlpK are conserved in all the known GlpK sequences, including those from various bacteria, yeast and human. The roles that these three residues play in the catalytic mechanism were investigated by using site-directed mutagenesis to produce three mutants: Arg-82-Ala, Glu-83-Ala, and Asp-244-Ala. Replacement of Asp-244 by Ala resulted in a complete loss of activity, thus suggesting that Asp-244 is important for catalysis. Taking k(cat)/K(m) as a simple measure of catalytic efficiency, the mutants Arg-82-Ala and Glu-83-Ala were judged to cause 190- and 37,000-fold decrease, respectively, when compared to the wild-type GlpK. Thus, these three residues play a critical role in the catalytic mechanism. However, only mutant Glu-83-Ala was cleaved by alpha-chymotrypsin, and proteolysis studies showed that the mutant Glu-83-Ala involves a change in the exposure of Tyr-331 at the alpha-chymotrypsin site. This indicates a large domain conformational change, since the residues corresponding to Glu-83 and Tyr-331 in the Escherichia coli GlpK sequence are located in domain IB and domain IIB, respectively. The apparent conformational change caused by replacement of Glu-83 leads us to propose that Glu-83 is an important residue for stabilization of domain conformation.  相似文献   

18.
Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the kcat/Km value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pKa value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.  相似文献   

19.
Aspartate transcarbamylase (EC 2.1.3.2) from E. coli is a multimeric enzyme consisting of two catalytic subunits and three regulatory subunits whose activity is regulated by subunit interactions. Differential scanning calorimetric (DSC) scans of the wild-type enzyme consist of two peaks, each comprised of at least two components, corresponding to denaturation of the catalytic and regulatory subunits within the intact holoenzyme (Vickers et al., J. Biol. Chem. 253 (1978) 8493; Edge et al., Biochemistry 27 (1988) 8081). We have examined the effects of nine single-site mutations in the catalytic chains. Three of the mutations (Asp-100-Gly, Glu-86-Gln, and Arg-269-Gly) are at sites at the C1: C2 interface between c chains within the catalytic subunit. These mutations disrupt salt linkages present in both the T and R states of the molecule (Honzatko et al., J. Mol. Biol. 160 (1982) 219; Krause et al., J. Mol. Biol. 193 (1987) 527). The remainder (Lys-164-Ile, Tyr-165-Phe, Glu-239-Gln, Glu-239-Ala, Tyr-240-Phe and Asp-271-Ser) are at the C1: C4 interface between catalytic subunits and are involved in interactions which stabilize either the T or R state. DSC scans of all of the mutants except Asp-100-Gly and Arg-269-Gly consisted of two peaks. At intermediate concentrations, Asp-100-Gly and Arg-269-Gly had only a single peak near the Tm of the regulatory subunit transition in the holoenzyme, although their denaturational profiles were more complex at high and low protein concentrations. The catalytic subunits of Glu-86-Gln, Lys-164-Ile and Asp-271-Ser appear to be significantly destabilized relative to wild-type protein while Tyr-165-Phe and Tyr-240-Phe appear to be stabilized. Values of delta delta G degree cr, the difference between the subunit interaction energy of wild-type and mutant proteins, evaluated as suggested by Brandts et al. (Biochemistry 28 (1989) 8588) range from -3.7 kcal mol-1 for Glu-86-Gln to 2.4 kcal mol-1 for Tyr-165-Phe.  相似文献   

20.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to form acetyl-CoA and acetoacetate. In metal-dependent aldol and Claisen reactions, acidic residues often function either as cation ligands or as participants in general acid/base catalysis. Site-directed mutagenesis was used to produce conservative substitutions for the conserved acidic residues Glu-37, Asp-42, Glu-72, Asp-204, Glu-279, and Asp-280. HMG-CoA lyase deficiency results from a human mutation that substitutes lysine for glutamate 279. The E279K mutation has also been engineered; expression in Escherichia coli produces an unstable protein. Substitution of alanine for glutamate 279 produces a protein that is sufficiently stable for isolation and retains substantial catalytic activity. However, thermal inactivation experiments demonstrate that E279A is much less stable than wild-type enzyme. HMG-CoA lyase deficiency also results from mutations at aspartate 42. Substitutions that eliminate a carboxyl group at residue 42 perturb cation binding and substantially lower catalytic efficiency (104-105-fold decreases in specific activity for D42A, D42G, or D42H versus wild-type). Substitutions of alanine for the other conserved acidic residues indicate the importance of glutamate 72. E72A exhibits a 200-fold decrease in kcat and >103-fold decrease in kcat/Km. E72A is also characterized by inflation in the Km for activator cation (26-fold for Mg2+; >200-fold for Mn2+). Similar, but less pronounced, effects are measured for the D204A mutant. E72A and D204A mutant proteins both bind stoichiometric amounts of Mn2+, but D204A exhibits only a 2-fold inflation in KD for Mn2+, whereas E72A exhibits a 12-fold inflation in KD (23 microm) in comparison with wild-type enzyme (KD = 1.9 microm). Acidic residues corresponding to HMG-CoA lyase Asp-42 and Glu-72 are conserved in the HMG-CoA lyase protein family, which includes proteins that utilize acetyl-CoA in aldol condensations. These related reactions may require an activator cation that binds to the corresponding acidic residues in this protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号