首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An approach is described for identifying and quantifying oxidant-sensitive protein thiols using a cysteine-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, Foster City, CA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT reagent, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. To validate our approach, creatine kinase with four cysteine residues, one of which is oxidant-sensitive, was chosen as an experimental model. ICAT-labeled peptides derived from creatine kinase were used to evaluate the relative abundance of the free thiols in samples subjected (or not) to treatment with hydrogen peroxide. As predicted, hydrogen peroxide decreased the relative abundance of the unmodified oxidant-sensitive thiol residue of cysteine-283 in creatine kinase, providing proof of principle that an ICAT-based quantitative mass spectrometry approach can be used to identify and quantify oxidation of cysteine thiols. This approach opens an avenue for proteomics studies of the redox state of protein thiols.  相似文献   

2.
The chemically-coded affinity tag (CCAT) method combines standard electrophoresis protocols with MALDI-TOF-MS analysis to identify and quantify protein abundances in complex samples in one step. This method is designed to fit into the workflow of SDS-PAGE or two-dimensional electrophoresis (2-DE) only requiring basic proteome laboratory equipment. Prior to electrophoresis two protein samples are separately labelled with a heavy or a light version of the CCAT reagent via reduced cysteines in the proteins. Equal amounts are then combined and electrophoretically separated. Proteins can then be excised from the gel to obtain their peptide mass fingerprint by mass spectrometry. This fingerprint enabled not only identification, but also quantification by comparing relative peak intensities of CCAT-labelled peptides. In this article, we display how the CCAT method can be used to analyse two protein samples in one gel and that the peak intensities of labelled peptides reflect the abundance of a protein in it.  相似文献   

3.
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.  相似文献   

4.
Mammalian proteasomes are macromolecular complexes formed of a catalytic 20S core associated to two regulatory complexes. The 20S core complex consists of four stacked rings of seven alpha or beta subunits. Three beta subunits contain a catalytic site and can be replaced by three interferon gamma-inducible counterparts to form the immunoproteasome. Cells may constitutively possess a mixture of both 20S proteasome types leading to a heterogeneous proteasome population. Purified rat 20S proteasome has been separated in several chromatographic fractions indicating an even higher degree of complexity in 20S proteasome subunit composition. This complexity may arise from the presence of subunit isoforms, as previously detected in purified human erythrocyte 20S proteasome. In this study, we have used a quantitative proteomic approach based on two-dimensional gel electrophoresis and isotope-coded affinity tag (ICAT) labeling to quantify the variations in subunit composition, including subunit isoforms, of 20S proteasomes purified from different cells. The protocol has been adapted to the analysis of low quantities of 20S proteasome complexes. The strategy has then been validated using standard proteins and has been applied to the comparison of 20S proteasomes from erythrocytes and U937 cancer cells. The results obtained show that this approach represents a valuable tool for the study of 20S proteasome heterogeneity.  相似文献   

5.
6.
New mass-tagging reagents for quantitative proteomics measurements have been designed using solid phase peptide synthesis technology. The solid phase mass tags have been used to accurately measure the relative amounts of cysteine-containing peptides in model peptide mixtures as well as in mixtures of tryptic digests in the femtomol range. Measurements were made using both matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and online reversed-phase capillary liquid chromatography coupled through a nanoelectrospray interface to an ion trap mass spectrometer (capillary LC/ESI-MS). Results of mass-tagging experiments obtained from these two mass spectrometry techniques and their relative advantages and disadvantages for identification and quantitation of mass tagged peptides are compared. These reagents provide a simple, rapid and cost-effective alternative to currently available mass tagging technologies.  相似文献   

7.
Proteomics has rapidly become an important tool for life science research, allowing the integrated analysis of global protein expression from a single experiment. To accommodate the complexity and dynamic nature of any proteome, researchers must use a combination of disparate protein biochemistry techniques, often a highly involved and time-consuming process. Whilst highly sophisticated, individual technologies for each step in studying a proteome are available, true high-throughput proteomics that provides a high degree of reproducibility and sensitivity has been difficult to achieve. The development of high-throughput proteomic platforms, encompassing all aspects of proteome analysis and integrated with genomics and bioinformatics technology, therefore represents a crucial step for the advancement of proteomics research. ProteomIQ? (Proteome Systems) is the first fully integrated, start-to-finish proteomics platform to enter the market. Sample preparation and tracking, centralized data acquisition and instrument control, and direct interfacing with genomics and bioinformatics databases are combined into a single suite of integrated hardware and software tools, facilitating high reproducibility and rapid turnaround times. This review will highlight some features of ProteomIQ, with particular emphasis on the analysis of proteins separated by 2D polyacrylamide gel electrophoresis.  相似文献   

8.
A proteomics approach to membrane trafficking   总被引:1,自引:1,他引:0  
  相似文献   

9.
Proteomics has rapidly become an important tool for life science research, allowing the integrated analysis of global protein expression from a single experiment. To accommodate the complexity and dynamic nature of any proteome, researchers must use a combination of disparate protein biochemistry techniques, often a highly involved and time-consuming process. Whilst highly sophisticated, individual technologies for each step in studying a proteome are available, true high-throughput proteomics that provides a high degree of reproducibility and sensitivity has been difficult to achieve. The development of high-throughput proteomic platforms, encompassing all aspects of proteome analysis and integrated with genomics and bioinformatics technology, therefore represents a crucial step for the advancement of proteomics research. ProteomIQ (Proteome Systems) is the first fully integrated, start-to-finish proteomics platform to enter the market. Sample preparation and tracking, centralized data acquisition and instrument control, and direct interfacing with genomics and bioinformatics databases are combined into a single suite of integrated hardware and software tools, facilitating high reproducibility and rapid turnaround times. This review will highlight some features of ProteomIQ, with particular emphasis on the analysis of proteins separated by 2D polyacrylamide gel electrophoresis.  相似文献   

10.

Background  

Single Nucleotide Polymorphisms (SNPs) are the most common type of polymorphisms found in the human genome. Effective genetic association studies require the identification of sets of tag SNPs that capture as much haplotype information as possible. Tag SNP selection is analogous to the problem of data compression in information theory. According to Shannon's framework, the optimal tag set maximizes the entropy of the tag SNPs subject to constraints on the number of SNPs. This approach requires an appropriate probabilistic model. Compared to simple measures of Linkage Disequilibrium (LD), a good model of haplotype sequences can more accurately account for LD structure. It also provides a machinery for the prediction of tagged SNPs and thereby to assess the performances of tag sets through their ability to predict larger SNP sets.  相似文献   

11.
A proteomics approach to understanding protein ubiquitination   总被引:28,自引:0,他引:28  
There is a growing need for techniques that can identify and characterize protein modifications on a large or global scale. We report here a proteomics approach to enrich, recover, and identify ubiquitin conjugates from Saccharomyces cerevisiae lysate. Ubiquitin conjugates from a strain expressing 6xHis-tagged ubiquitin were isolated, proteolyzed with trypsin and analyzed by multidimensional liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for amino acid sequence determination. We identified 1,075 proteins from the sample. In addition, we detected 110 precise ubiquitination sites present in 72 ubiquitin-protein conjugates. Finally, ubiquitin itself was found to be modified at seven lysine residues providing evidence for unexpected diversity in polyubiquitin chain topology in vivo. The methodology described here provides a general tool for the large-scale analysis and characterization of protein ubiquitination.  相似文献   

12.
A proteomics approach to identifying fish cell lines   总被引:2,自引:0,他引:2  
Wagg SK  Lee LE 《Proteomics》2005,5(16):4236-4244
Fish cell lines are relatively easy to culture and most have simple growth requirements that make cross contamination a potential problem. Cell line contamination is not an uncommon incident in laboratories handling more than one cell line and many reports have been made on cross contamination of mammalian cell lines. Although problems of misidentification and cross-contamination of fish cell lines have rarely been reported, these are issues of concern for cell culturists that can make scientific results and their reproducibility unreliable. Proper identification of cell lines is thus crucial and protocols for routine and rapid screening are preferred. Cytogenetic evaluation, DNA fingerprinting, microsatellite analysis and PCR methods have been published for inter-species identification of many cell lines, but discerning intra-species contamination has been challenging. More complex DNA fingerprinting and hybridization techniques coupled with isoenzyme analysis have been developed to discriminate intra-species contamination, however, these require complex and time consuming procedures to enable cell identification thus are difficult to apply for routine use. A simple proteomic approach has been made to identify several fish cell lines derived from tissues of the same or differing species. Protein expression signatures (PES) of the evaluated fish cell lines have been developed using 2-DE and image analysis. A higher degree of concordance was seen among cell lines derived from rainbow trout, than from other fish species. Similar concordance was seen in cells derived from the same tissues than from other tissues within the same species. These profiles have been saved in an electronic databank and could be made available to be used for discerning the origins of the various cell lines evaluated. This proteomic approach could thus serve as an additional, valuable and reliable technique for the identification of fish cell lines.  相似文献   

13.
Phosphorylation-dependent protein-protein interactions provide the mechanism for a large number of intracellular signal transduction pathways. One of the goals of signal transduction research is to understand more precisely the nature of these phosphorylation-dependent interactions. Here, we report a novel strategy based on quantitative proteomics that allows for the rapid analysis of peptide-protein interactions with more than one phosphorylation site involved. The phosphorylation of two tyrosine residues, Y342 and Y346, within the linker B region of the protein-tyrosine kinase Syk is important for optimal signaling from the B cell receptor for antigen. We employed four amino-specific, isobaric reagents to differentially label proteins interacting in vitro with four Syk peptides containing none, one, or two phosphates on tyrosine residues Y342 and Y346, respectively. In total, 76 proteins were identified and quantified, 11 of which were dependent on the phosphorylation of individual tyrosine residues. One of the proteins, peroxiredoxin 1, preferably bound to phosphorylated Y346, which was further verified by Western blotting results. Thus, we demonstrate that the use of 4-fold multiplexing allows for relative protein measurements simultaneously for the identification of interacting proteins dependent on the phosphorylation of specific residues.  相似文献   

14.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

15.
MOTIVATION: Recent studies have shown that a small subset of Single Nucleotide Polymorphisms (SNPs) (called tag SNPs) is sufficient to capture the haplotype patterns in a high linkage disequilibrium region. To find the minimum set of tag SNPs, exact algorithms for finding the optimal solution could take exponential time. On the other hand, approximation algorithms are more efficient but may fail to find the optimal solution. RESULTS: We propose a hybrid method that combines the ideas of the branch-and-bound method and the greedy algorithm. This method explores larger solution space to obtain a better solution than a traditional greedy algorithm. It also allows the user to adjust the efficiency of the program and quality of solutions. This algorithm has been implemented and tested on a variety of simulated and biological data. The experimental results indicate that our program can find better solutions than previous methods. This approach is quite general since it can be used to adapt other greedy algorithms to solve their corresponding problems. AVAILABILITY: The program is available upon request.  相似文献   

16.
The production of pure protein is indispensable for many applications in life sciences, however protein purification protocols are difficult to establish, and the experimental procedures are usually tedious and time-consuming. Therefore, a number of tags were developed to which proteins of interest can be fused and subsequently purified by affinity chromatography. We report here on a novel lectin-based affinity tag using the D-mannose-specific lectin LecB from Pseudomonas aeruginosa. A fusion protein was constructed consisting of yellow fluorescent protein and LecB separated by an enterokinase cleavage site. This protein was overexpressed in Escherichia coli Tuner (DE3), and the cell extract was loaded onto a column containing a mannose agarose matrix. Electrophoretically pure fusion protein at a yield of 24 mg/L culture was eluted with a D-mannose containing buffer The determination of equilibrium adsorption isotherms revealed an association constant of the lectin to the mannose agarose matrix of Ka = 3.26 x 10(5)/M. Enterokinase treatment of the purified fusion protein resulted in the complete removal of the LecB-tag. In conclusion, our results indicate that the lectin LecB of P. aeruginosa can be used as a tag for the high-yield one-step purification of recombinant proteins.  相似文献   

17.
A major aim of present-day proteomics is to study changes in protein expression levels at a global level, ideally monitoring all proteins present in cells or tissue. Mass spectrometry is a well-respected technology in proteomics that is widely used for the identification of proteins. More recently, methodologies have been introduced showing that mass spectrometry can also be used for protein quantification. This article reviews various mass spectrometry-based technologies in quantitative proteomics, highlighting several interesting applications in areas ranging from cell biology to clinical applications.  相似文献   

18.
Large-scale protein quantification has become a major proteomics application in many areas of biological and medical research. During the past years, different techniques have been developed, including gel-based such as differential in-gel electrophoresis (DIGE) and liquid chromatography-based such as isotope labeling and label-free quantification. These quantitative proteomics tools hold significant promise for biomarker discovery, diagnostic and therapeutic applications. They are also important for research in functional genomics and systems biology towards basic understanding of molecular networks and pathway interactions. In this review, we summarize current technologies in quantitative proteomics and discuss recent applications of the technologies.  相似文献   

19.
20.
A major aim of present-day proteomics is to study changes in protein expression levels at a global level, ideally monitoring all proteins present in cells or tissue. Mass spectrometry is a well-respected technology in proteomics that is widely used for the identification of proteins. More recently, methodologies have been introduced showing that mass spectrometry can also be used for protein quantification. This article reviews various mass spectrometry-based technologies in quantitative proteomics, highlighting several interesting applications in areas ranging from cell biology to clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号