首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Field experiments concerning lupin grown in a low‐rainfall environment of the Mediterranean climatic region of Western Australia were conducted over three seasons to identify and evaluate the characteristics that maximise yield per unit of rainfall. The characteristics of early flowering and podding, high pod retention, fast rates of seed filling, osmotic adjustment and the degree of dry matter transfer from stem to the seed were studied in 12 lupin genotypes differing in seed yield under conditions of terminal drought. To allow recently released cultivars and advanced breeding lines to be evaluated, five to six genotypes were included in the first and the third year and nine in the second year. The genotypes were grown rainfed until pod set and then under a rainout shelter. Flowering and podding dates, pod retention, seed growth rate and osmotic adjustment were measured in detail, together with leaf water potential, seed yield and its components. The timing and intensity of development of the terminal drought varied from average in 1998 and 1999 to extreme in 2000. In each year, the seed yield under terminal drought showed genotypic differences, which appeared consistent with the timing and intensity of the development of terminal drought. Early flowering and podding were significantly correlated with seed yield. Fast rates of seed growth were highly and significantly correlated with high yields regardless of the intensity of development of terminal drought. Pod retention was highly correlated with yield in seasons in which the intensity of the development of terminal drought was average but not under extreme conditions of terminal drought. This was because the seed number per pod was markedly reduced to compensate for the high number of pods retained. Osmotic adjustment did not occur during the development of terminal drought in any of the genotypes. Dry matter transfer from stems to seeds was insignificant and not related to seed yield, suggesting that it is not a useful characteristic in screening for high yield under terminal drought.  相似文献   

5.
An experiment to study the growth of garden cress roots in microgravity is described. The experiment, denoted RANDOM, was an ESA Biorack experiment in the IML-2 flight in July 1994. In the absence of gravity, it can be anticipated that the roots would show random growth, changing their direction randomly. The hypothesis that such random growth movements occur according to random walk theory, leads to predictions as to the detailed manner in which deviations increase with time. The experiment was designed to test this random walk hypothesis. The paper concentrates on the technological aspects of studying the roots in microgravity. The development of suitable plant chambers, fitting containers developed by ESA, is described as well as the techniques used to grow the seeds between agar slices. hardware was developed to record photographically root movements between the agar slices. Photos were taken once per hour. Some plant chambers were designed to allow fixation of plant material in space. The practical solutions found using glutaraldehyde for prefixation in the Spacelab, within the restrictions given, are described. The experimental results show that the growth pattern in fact followed the prediction from the random walk approach. The average changes in the growth direction stayed constant and equal to zero during the experiment while the squared angular deviations increased proportional to time. Furthermore, plant material prefixed in orbit was permanently fixed after the flight. Light microscopy and electron microscopy pictures are shown as examples of the results achieved. The long prefixation period meant a drawback for the quality of the fixation process. However, sections suitable for study were achieved. The main goals of the RANDOM experiment were therefore achieved.  相似文献   

6.
The minimal model of the “relative nonlinearity” type fluctuation-maintained coexistence is investigated. The competing populations are affected by an environmental white noise. With quadratic density dependence, the long-term growth rates of the populations are determined by the average and the variance of the (fluctuating) total density. At most two species can coexist on these two “regulating” variables; competitive exclusion would ensue in a constant environment. A numerical study of the expected time until extinction of any of the two species reveals that the criterion of mutual invasibility predicts the parameter range of long-term coexistence correctly in the limit of zero extinction threshold. However, any extinction threshold consistent with a realistic population size will allow only short-term coexistence. Therefore, our simulations question the biological relevance of mutual invasibility, as a sufficient condition of coexistence, for large density fluctuations. We calculate the average and the variance of the fluctuating density of the coexisting populations analytically via the moment-closure approximation; the results are reasonably close to the simulated behavior. Based on this treatment, robustness of coexistence is studied in the limit of infinite population size. We interpret the results of this analysis in the context of necessity of niche segregation with respect to the regulating variables using a framework theory published earlier.  相似文献   

7.
To develop agronomic application rates for alum-amended poultry litter, nutrient and Al availability of this particular organic fertilizer were examined using long-term field weathering studies. It was revealed that concentrations of N, P, K+, and Al3+ in the poultry litter leachate ranged from 5 to 6,503 mg L-1, 2 to 84 mg L-1, 2 to 5135 mg L-1, and 0.05 to 4.6 mg L-1, respectively. Release of nutrients occurred principally in the first growing season and would last for years. During 19 months of field weathering, 10.5 kg N, 1.1 kg P, 34.5 kg K+, and 0.031 kg Al3+ were released per ton of the poultry litter and recovered in the leachate. The results suggest that no Al toxicity would be generated to crops if alum-amended poultry litter is used as a fertilizer. If applied at 13.3 ton ha-1, the poultry litter will supply 150.0 kg ha-1 N, 15.2 kg ha-1 P, and 456.2 kg ha-1 K+ to seasonal crops. Application of alum-amended poultry litter at available N-based rates will meet crop nutrient requirements while minimizing nutrient runoff losses.  相似文献   

8.
Water table fluctuation in arid land regions may alter tree fine-root growth and mortality, thereby affecting leaf growth. To reveal the effects of water table fluctuation on fine-root growth and mortality and their relation to leaf growth, we exposed P. alba L. cuttings to various fluctuating water table depths. 1-year-old rooted cuttings were grown individually in pots containing sandy soil in a greenhouse in three water table depth treatments for 45 days: constant depth at 45 cm from the soil surface, fluctuating depths between 45 and 30 cm, and fluctuating depths between 45 and 15 cm. Fine-root biomass and mortality, biomass partitioning among plant parts, and whole-tree growth responses were determined in cuttings harvested every 15 days. Fluctuation of water tables increased the mortality of fine roots at the layers near the soil surface. Fine-root mortality increased during the shallower water table depth period. At the whole-root system level, although fine-root mortality increased when the water table was shallower, fine-root biomass was similar among the treatments, suggesting that P. alba cuttings would sustains its standing fine-root biomass under fluctuating water table depth conditions. Our structural equation modeling showed the fine-root proportion affects leaf morphological changes, suggesting that there would be a parallel relationship of morphological changes between roots and leaves with fluctuating water tables.  相似文献   

9.
Summary Irrigation experiments with wheat (Triticum aestivum L.) in clay loam, silty clay loam and the silty clay loam. Contrary to this, irrigation at late jointing, and late jointing and milk stages produced deepest root system in the loam. Roots followed the receding water table. was greatest in the loam. Avoiding irrigation at late jointing stage caused shifting of the zone of peak root density downwards and concentration of roots near water table both in the clay loam and the silty clay loam. Contrary to this, irrigation at late jointing, and late jointing and milk stages produced deepest root system in the loam. Roots followed the receding water table. Seasonal evapotranspiration (E) was affected by number of irrigations and water table depths. Water table contribution ranged from 61.6–64.5% of the total E in clay loam, from 39.0–46.8% of the total E in silty clay loam and from 4.0–8.1% of the total E in loam. Irrigations after late jointing contributed largely to the drainage. Yield was significantly higher in the treatments with scheduled irrigations at crown root initiation and late jointing stages in the clay loam and silty clay loam and at crown root initiation, late jointing and milk stages in the loam. This research has been financed in part by a grant made by USDA, ARS, authorized by Public Law-480  相似文献   

10.
Regulation of starch biosynthesis in response to a fluctuating environment   总被引:3,自引:0,他引:3  
Geigenberger P 《Plant physiology》2011,155(4):1566-1577
  相似文献   

11.
We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment a species without energy storage always out-competes a species with energy reserves. This hinders evolution of species with storage from those without storage. Using the adaptive dynamics approach for non-equilibrium ecological systems we will show that in a fluctuating environment there are multiple stable evolutionary singular strategies (ss's): one for a species without, and one for a species with energy storage. The evolutionary end-point depends on the initial evolutionary state. We will formulate the invasion fitness in terms of Floquet multipliers for the oscillating non-autonomous system. Bifurcation theory is used to study points where due to evolutionary development by mutational steps, the long-term dynamics of the ecological system changes qualitatively. To that end, at the ecological time scale, the trait value at which invasion of a mutant into a resident population becomes possible can be calculated using numerical bifurcation analysis where the trait is used as the free parameter, because it is just a bifurcation point. In a constant environment there is a unique stable equilibrium for one species following the "competitive exclusion" principle. In contrast, due to the oscillatory dynamics on the ecological time scale two species may coexist. That is, non-equilibrium dynamics enhances biodiversity. However, we will show that this coexistence is not stable on the evolutionary time scale and always one single species survives.  相似文献   

12.
We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment a species without energy storage always out-competes a species with energy reserves. This hinders evolution of species with storage from those without storage. Using the adaptive dynamics approach for non-equilibrium ecological systems we will show that in a fluctuating environment there are multiple stable evolutionary singular strategies (ss's): one for a species without, and one for a species with energy storage. The evolutionary end-point depends on the initial evolutionary state. We will formulate the invasion fitness in terms of Floquet multipliers for the oscillating non-autonomous system. Bifurcation theory is used to study points where due to evolutionary development by mutational steps, the long-term dynamics of the ecological system changes qualitatively. To that end, at the ecological time scale, the trait value at which invasion of a mutant into a resident population becomes possible can be calculated using numerical bifurcation analysis where the trait is used as the free parameter, because it is just a bifurcation point. In a constant environment there is a unique stable equilibrium for one species following the “competitive exclusion” principle. In contrast, due to the oscillatory dynamics on the ecological time scale two species may coexist. That is, non-equilibrium dynamics enhances biodiversity. However, we will show that this coexistence is not stable on the evolutionary time scale and always one single species survives.  相似文献   

13.
Abstract. New techniques for haemolymph analysis under field conditions have permitted studies of short-term changes in the body fluid concentrations of insects, in association with ambient conditions.
The haemolymph of four species of caterpillar changes in relation to the prevailing relative humidity, but the magnitude of these changes was correlated with the degree of exposure to the environment characteristic of each species and instar. In larvae habitually fully exposed to ambient conditions, haemolymph concentrations normally changed predictably through a day in relation to the humidity. However, osmoregulatory mechanisms operated to keep the increments in osmolality within acceptable limits. For those larvae which inhabit protected microenvironments with constant high humidity, either in association with plants or in conspecific aggregations, ambient humidity had little effect on the blood when this was sampled in situ. But when removed from such habitats, blood osmolality increases were large and rapid, and the larvae often succumbed to desiccation.
The role of biochemical, physiological, behavioural and ecological strategies in establishing the water balance of an insect in its natural surroundings are considered in the light of these findings.  相似文献   

14.
Summary We investigate the behavior of population models in the presence of a periodically fluctuating environment. We consider in particular single-species models and models of interspecific competition. It is shown that the fluctuations cause constant equilibrium states to be replaced by periodic equilibrium states, with a shift in the mean value relative to the constant-environment state. It is shown also that the locations of points of exchange of stability may be changed as a result of the fluctuations.  相似文献   

15.
In this paper we study the bio-economics of a renewable resource with governing dynamics described by two distinct growth functions (viz., logistic and Gompertz growth functions) in a seasonally varying environment. Seasonality is introduced into the system by taking the involved ecological parameters to be periodic. In this work, we establish a procedure to obtain the optimal path and compute the optimal effort policy which maximizes the net revenue to the harvester for a fairly general optimal control problem and apply this procedure to the considered models to derive some important conclusions. These problems are solved on the infinite horizon. We find that, for both the models, the optimal harvest policy and the corresponding optimal path are periodic after a finite time. We also obtain optimal solution, a suboptimal harvesting policy and the corresponding suboptimal approach path to reach this optimal solution. The key results are illustrated using numerical simulations and we compare the revenues to the harvester along the optimal and suboptimal paths. The general procedure developed in this work, for obtaining the optimal effort policy and the optimal path, has wider applicability.  相似文献   

16.
Hydrotropism: root growth responses to water   总被引:17,自引:0,他引:17  
The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting world agriculture, there are surprisingly few studies on hydrotropism. Recent genetic analysis of hydrotropism in Arabidopsis has provided new insights about the mechanisms that the root cap uses to perceive and respond simultaneously to moisture and gravity signals. This knowledge might enable us to understand how the root cap processes environmental signals that are capable of regulating whole plant growth.  相似文献   

17.
1. A simple experimental device was designed, in which seeds can be exposed to natural fluctuation of surface soil temperature under a constant soil moisture condition maintained by an automatic water supply system based on the principle of a Mariotte siphon.
2. Except for the period during summer drought, surface soil temperature at a depth of 5 cm and its fluctuation within the device were largely similar to the temperature of the surface soil subjected to natural fluctuation of moisture.
3. The seeds of Persicaria lapathifolia placed at the depth of 0·5 cm in the soil within the device germinated during the natural germination season of the species, while the seeds placed at the depth of 5 cm or beneath the 10 cm-thick layer of litter failed to germinate.
4. The ungerminated seeds retrieved in August did not germinate at the favourable alternating temperature in the laboratory test unless exposed to previous moist chilling, suggesting the induction of secondary dormancy. Therefore, higher summer temperatures but not summer drought or moisture fluctuation seem to have been responsible for the dormancy induction, because the dormancy was induced in the fully hydrated seeds.  相似文献   

18.
Dynamics of photosynthesis in fluctuating light   总被引:1,自引:0,他引:1  
Our understanding of the molecular mechanisms of plant photosynthesis is expanding from insights into static fluxes in constant irradiance to an understanding of complex dynamic patterns in fluctuating light. Knowledge about regulatory interactions, information about relevant biological features that emerge in fluctuating light, and the new standards for sharing biological models allow world-wide consortia aimed at the comprehensive modeling of photosynthetic dynamics.  相似文献   

19.
This paper analyzes the evolutionary dynamics of a locus controlling the degree of female mating preference in a temporally fluctuating environment. Preference for mating with males with respect to their genotypes at a locus that is subject to temporally varying natural selection pressure is considered first. With weak selection and free recombination between the choice locus and the selected locus, preference for mating with heterozygotes appears to be favored. With strong selection, preference for homozygous mates may be favored. In each case, choice alleles may increase from very low initial frequencies to near fixation, in contrast to previous models of mate choice in varying environments. Linkages between the two loci has complex effects on the strength and direction of selection for mate choice. Preference for mating with males with the currently fitter genotypes at the locus under natural selection is also modelled. Provided that the environmental period is not too short, a rare allele conferring such preference may be favored and spread to fixation. Strong natural selection, tight linkage and a short environmental period may produce polymorphism for the level of mate choice.  相似文献   

20.
Fitness consequences of avian personalities in a fluctuating environment   总被引:10,自引:0,他引:10  
Individual animals differ in the way they cope with challenges in their environment, comparable with variation in human personalities. The proximate basis of variation in personality traits has received considerable attention, and one general finding is that personality traits have a substantial genetic basis. This poses the question of how variation in personality is maintained in natural populations. We show that selection on a personality trait with high heritability fluctuates across years within a natural bird population. Annual adult survival was related to this personality trait (behaviour in novel environments) but the effects were always opposite for males and females, and reversed between years. The number of offspring surviving to breeding was also related to their parents' personalities, and again selection changed between years. The observed annual changes in selection pressures coincided with changes in environmental conditions (masting of beeches) that affect the competitive regimes of the birds. We expect that the observed fluctuations in environmental factors lead to fluctuations in competition for space and food, and these, in association with variations in population density, lead to a variation in selection pressure, which maintains genetic variation in personalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号