共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Actin filaments are organised into sub-compartments of meshwork and bundles in lamellipodia. Localisation of fascin, the LIM and SH3 domain protein 1 (lasp-1), and lasp-2 to the bundles suggest their involvement in that organisation; however, their contributions remain unclear. We have compared the turnover of these proteins with actin at the bundle. After photobleaching, EGFP-actin recovered inwards from the bundle tip, consistent with the retrograde flow by treadmilling. In contrast, the recovery of EGFP-fascin, -lasp-1 and -lasp-2 occurred from the anterograde direction. These results suggest that these molecules would participate in the stabilisation of bundles but not in initiation. 相似文献
3.
4.
Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles 总被引:13,自引:4,他引:13 下载免费PDF全文
《The Journal of cell biology》1995,131(4):989-1002
The morphogenesis of myosin II structures in active lamella undergoing net protrusion was analyzed by correlative fluorescence and electron microscopy. In rat embryo fibroblasts (REF 52) microinjected with tetramethylrhodamine-myosin II, nascent myosin spots formed close to the active edge during periods of retraction and then elongated into wavy ribbons of uniform width. The spots and ribbons initially behaved as distinct structural entities but subsequently aligned with each other in a sarcomeric-like pattern. Electron microscopy established that the spots and ribbons consisted of bipolar minifilaments associated with each other at their head-containing ends and arranged in a single row in an "open" zig-zag conformation or as a "closed" parallel stack. Ribbons also contacted each other in a nonsarcomeric, network-like arrangement as described previously (Verkhovsky and Borisy, 1993. J. Cell Biol. 123:637-652). Myosin ribbons were particularly pronounced in REF 52 cells, but small ribbons and networks were found also in a range of other mammalian cells. At the edge of the cell, individual spots and open ribbons were associated with relatively disordered actin filaments. Further from the edge, myosin filament alignment increased in parallel with the development of actin bundles. In actin bundles, the actin cross-linking protein, alpha-actinin, was excluded from sites of myosin localization but concentrated in paired sites flanking each myosin ribbon, suggesting that myosin filament association may initiate a pathway for the formation of actin filament bundles. We propose that zig-zag assemblies of myosin II filaments induce the formation of actin bundles by pulling on an actin filament network and that co-alignment of actin and myosin filaments proceeds via folding of myosin II filament assemblies in an accordion-like fashion. 相似文献
5.
The detailed substructure of actin filament bundles in microvilli of fertilized sea urchin eggs has been studied by analysing electron microscope images of negatively stained specimens. Transverse stripes which repeat about every 130 Å along the axis of a bundle, as previously observed by Burgess & Schroeder (1977), reflect the positions of cross-bridges that connect the filaments into a bundle. Analysis of optical transforms of the micrographs reveals that there are approximately 14 actin monomers between cross-overs of the two long-pitch helical strands of the actin filaments, with three cross-bridges in this interval. The structure is basically similar to that of the hexagonally packed bundles prepared in vitro from high speed supernatants of sea urchin eggs by Kane (1975) and analyzed by DeRosier et al. (1977). One clear difference, however, is that the in vivo microvillar filament bundles are supercoiled, giving rise to long axial repeats of 1500 to 2000 Å.Computationally filtered images of regions that were only slightly supercoiled reveal the relative alignment of filaments within the bundles and show that crossbridges appear to interact with four actin monomers, apparently linking two actin monomers on one strand of one filament to the nearest two monomers on a neighbouring filament. However, the cross-bridges are not spaced at equal intervals corresponding to four actin subunits, presumably because of the lack of hexagonal symmetry in the individual filaments, which have about 14 actin monomers between cross-overs. Instead, the cross-bridges are arranged quasiequivalently along the longitudinal axis of the bundles, in steps of four or five actin subunit spacings (28 Å each). 相似文献
6.
Formation of actin filament bundles in the ring canals of developing Drosophila follicles 总被引:1,自引:2,他引:1 下载免费PDF全文
《The Journal of cell biology》1996,133(1):61-74
Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay the groundwork for our understanding of how a noncontractile ring increases in thickness, diameter, and length during development. 相似文献
7.
Elena A. Shestakova Ludmila P. Motuz Alexander A. Minin Lydia P. Gavrilova 《Cell biology international》1993,17(4):409-416
Indirect immunofluorescent microscopy was used to study the distribution of elongation factor 2 (eEF-2) in fixed human skin diploid and mouse embryo fibroblasts. It was found earlier that some of the eEF-2 ribosomes and initiation factor 2 (eIF-2) are co-localized with a part of the actin microfilament bundles in these cells (Gavrilova et al., 1987; Shestakova et al., 1991). Here it has been shown that inhibition of protein synthesis either by inactivation of eEF-2 itself with diphtheria toxin or by inactivation of ribosomes with ricin does not abolish the distribution of eEF-2 along the actin microfilament bundles. At the same time, the disassembly of actin microfilaments by cytochalasin D results also in the disappearance of eEF-2-carrying threads. This means that the eEF-2-carrying threads do not exist per se, and that the organization of eEF-2 in visible "filaments" depends upon the integrity of the actin cytoskeleton. 相似文献
8.
To investigate the mechanisms of protrusion in vertebrate cells, the primary event in cell motility, human fibroblasts were treated with neomycin, an inhibitor of the phosphatidylinositol cycle, to induce protrusion. Changes in cell motility and the cytoskeleton were examined by video, fluorescence, scanning electron, and confocal microscopy and by cytofluorometry. Protrusion in neomycin-treated human fibroblasts is correlated with a transient overall decrease in F-actin followed by an increase in F-actin at the leading edge of the protruding lamella. In growing lamellae, F-actin is organized in a marginal band at the leading edge. Although actin is present in the lamella behind the leading edge, very little of it is F-actin. Scanning electron microscopy of detergent-extracted cells reveals a band of dense filaments at the leading edge, corresponding to the marginal band of F-actin seen in fluorescently labeled cells, and a sparse population of short, fragmented filaments, in the rest of the lamella. Gelsolin is colocalized with F-actin in the marginal band and is also present in the lamella where F-actin is largely absent. The data support the hypothesis that the protrusion is initiated by the breakdown of cortical actin filaments, possibly mediated by gelsolin, whereas expansion of the protrusion requires de novo polymerization of actin filaments at the leading edge. 相似文献
9.
Hideyo Takatsuki Elina BengtssonAlf Månsson 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Bundles of unipolar actin filaments (F-actin), cross-linked via the actin-binding protein fascin, are important in filopodia of motile cells and stereocilia of inner ear sensory cells. However, such bundles are also useful as shuttles in myosin-driven nanotechnological applications. Therefore, and for elucidating aspects of biological function, we investigate if the bundle tendency to follow straight paths (quantified by path persistence length) when propelled by myosin motors is directly determined by material properties quantified by persistence length of thermally fluctuating bundles.Methods
Fluorescent bundles, labeled with rhodamine-phalloidin, were studied at fascin:actin molar ratios: 0:1 (F-actin), 1:7, 1:4 and 1:2. Persistence lengths (Lp) were obtained by fitting the cosine correlation function (CCF) to a single exponential function: < cos(θ(0) − θ(s)) > = exp(−s / (2Lp)) where θ(s) is tangent angle; s: path or contour lengths. < > denotes averaging over filaments.Results
Bundle-Lp (bundles < 15 μm long) increased from ~ 10 to 150 μm with increased fascin:actin ratio. The increase was similar for path-Lp (path < 15 μm), with highly linear correlation. For longer bundle paths, the CCF-decay deviated from a single exponential, consistent with superimposition of the random path with a circular path as suggested by theoretical analysis.Conclusions
Fascin–actin bundles have similar path-Lp and bundle-Lp, both increasing with fascin:actin ratio. Path-Lp is determined by the flexural rigidity of the bundle.General significance
The findings give general insight into mechanics of cytoskeletal polymers that interact with molecular motors, aid rational development of nanotechnological applications and have implications for structure and in vivo functions of fascin–actin bundles. 相似文献10.
The actin filament severing protein actophorin promotes the formation of rigid bundles of actin filaments crosslinked with alpha-actinin 总被引:4,自引:7,他引:4 下载免费PDF全文
S K Maciver D H Wachsstock W H Schwarz T D Pollard 《The Journal of cell biology》1991,115(6):1621-1628
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker. 相似文献
11.
Arrangement and possible function of actin filament bundles in ectoplasmic specializations of ground squirrel Sertoli cells 总被引:2,自引:0,他引:2 下载免费PDF全文
We have investigated the arrangement and function of actin filament bundles in Sertoli cell ectoplasmic specializations found adjacent to junctional networks and in areas of adhesion to spermatogenic cells. Tissue was collected, from ground squirrel (Spermophilus spp.) testes, in three ways: seminiferous tubules were fragmented mechanically; segments of intact epithelium and denuded tubule walls were isolated by using EDTA in a phosphate-buffered salt solution; and isolated epithelia and denuded tubule walls were extracted in glycerol. To determine the arrangement of actin bundles, the tissue was fixed, mounted on slides, treated with cold acetone (-20 degrees C), and then exposed to nitrobenzoxadiazole-phallacidin. Myosin was localized using immunofluorescence. To investigate the hypothesis that ectoplasmic specializations are contractile, glycerinated models were exposed to exogenous ATP and Ca++; then contraction was assessed qualitatively by using nitrobenzoxadiazole-phallacidin as a marker. Actin bundles in ectoplasmic specializations adjacent to junctional networks circumscribe the bases of Sertoli cells. When intact epithelia are viewed from an angle perpendicular to the epithelial base, honeycomb staining patterns are observed. Filament bundles in Sertoli cell regions adjacent to spermatogenic cells dramatically change organization during spermatogenesis. Initially, the bundles circle the region of contact between the developing acrosome and nucleus. They then expand to cover the entire head. As the spermatid flattens, filaments on one side of the now saucer-shaped head orient themselves parallel to the germ cell axis while those on the other align perpendicularly to it. Before sperm release, all filaments course parallel to the rim of the head. Contrary to the results we obtained with myoid cells, we could not convincingly demonstrate myosin in ectoplasmic specializations or induce contraction of glycerinated models. Our data are consistent with the hypothesis that actin in ectoplasmic specializations of Sertoli cells may be more skeletal than contractile. 相似文献
12.
Differential response of three types of actin filament bundles to depletion of cellular ATP levels 总被引:7,自引:0,他引:7
The effect of low levels of ATP on actin filament bundles in PtK2 cells was investigated by using 2-deoxyglucose, together with either sodium cyanide, sodium azide, or 2,4-dinitrophenol. Three actin filament systems were examined: stress fibers, cleavage rings, and dimethyl-sulfoxide (DMSO)-induced actin bundles in the nucleus. Of the three, only stress fibers disassembled when the ATP production was inhibited. The disassembly progressed slowly with the cells losing all stress fibers after about 90 min, but remaining in flat interconnected sheets. Mitotic cells that had progressed as far as metaphase when inhibitors were added, assembled cleavage rings. The process of cytokinesis took place in these cells but at a rate 5 to 10 times slower than normal, and disassembly of the cleavage ring was inhibited after the completion of cytokinesis. DMSO-induced nuclear actin bundles did not disassemble in cells depleted of ATP even when DMSO was eliminated from the medium. The peripheral aggregates of contractile proteins present in these cells became redistributed, however, and the cells flattened in the low ATP environment when DMSO was removed. Nuclear actin bundles did not form in DMSO-treated cells if the ATP inhibitors were present for as little as 5 min prior to DMSO exposure. Thus, the three types of actin filament bundles are affected in different ways by low intracellular levels of ATP. Stress fibers are most sensitive and cleavage rings, the least. 相似文献
13.
F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling 总被引:3,自引:4,他引:3 下载免费PDF全文
《The Journal of cell biology》1995,130(3):629-638
Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). 相似文献
14.
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4 Å) MTS-1 (1,1-Methanedyl Bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. 相似文献
15.
The effect of colcemid on the distribution of actin microfilament bundles in the mouse embryo fibroblasts was studied using immunomorphological methods. In the control fibroblasts, microfilament bundles usually cross the entire cell and are oriented in parallel to the stable edges of the cell. In the colcemid-treated cells there are several groups of bundles. In each group all bundles are oriented in the same direction but these directions do not depend on the cell shape. Besides, bundles in the colcemid-treated cells are shorter than in the control cells. Microtubules are suggested to control the organization of action bundles. 相似文献
16.
《Biophysical journal》2021,120(20):4399-4417
We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps. 相似文献
17.
E A Shestakova L P Motuz A A Minin V I Gelfand L P Gavrilova 《Cell biology international reports》1991,15(1):75-84
Indirect immunofluorescent microscopy was used to study the distribution of eukaryotic elongation factor 2 (EF-2) in cultured mouse embryo fibroblasts. The perinuclear area (endoplasm) of all the cells and many straight cables running along the whole cytoplasm were stained with monospecific goat or rabbit antibodies to rat liver EF-2. Double staining of the cells with antibodies to EF-2 and rhodaminyl-phalloidin (used for actin microfilament detection) showed that EF-2 containing cables coincided with bundles of actin microfilaments. Not all actin microfilament bundles contained EF-2: sometimes EF-2 was not observed in bundles running along the cell edges or in actin microfilament junctions. Triton X-100 extracted most of EF-2 from the cells and no actin microfilament bundles were stained with the EF-2 antibodies in the Triton-extracted cells. Thus, in mouse embryo fibroblasts EF-2 can be found along actin microfilament bundles, but it is unlikely to be their integral protein. 相似文献
18.
Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals. 相似文献
19.
Bundles of filamentous actin form the primary building blocks of a broad range of cytoskeletal structures, including filopodia,
stereocilia and microvilli. In each case, the cell uses specific associated proteins to tailor the dynamics, dimensions and
mechanical properties of the bundles to suit a specific cellular function. While the length distribution of actin bundles
was extensively studied, almost nothing is known about the thickness distribution. Here, we use high-resolution cryo-TEM to
measure the thickness distribution of actin/fascin bundles, in vitro. We find that the thickness distribution has a prominent
peak, with an exponential tail, supporting a scenario of an initial fast formation of a disc-like nucleus of short actin filaments,
which only later elongates. The bundle thicknesses at steady state are found to follow the distribution of the initial nuclei
indicating that no lateral coalescence occurs. Our results show that the distribution of bundles thicknesses can be controlled
by monitoring the initial nucleation process. In vivo, this is done by using specific regulatory proteins complexes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
20.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation. 相似文献