首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The long-term complications of insulin-dependant diabetes mellitus have become a major health care problem, and it is now clear that they arise from inadequate homeostatic control of blood glucose by injected replacement insulin. Transplantation of pancreatic islets is arguably the most logical approach to restoring metabolic homeostasis in people with diabetes. This review looks at the current status of human islet transplantation and the problems that remain. These include: (1) the limited supply of human islet tissue available for transplantation; (2) the adverse effects of current immunosuppressive protocols on diabetic patients; (3) the problems of primary nonfunction of the transplanted islets; (4) the rejection of islets; and (5) the recurrence of autoimmune diabetic disease. Some of the approaches that might solve these problems are then examined: (1) immune modulation to reduce or prevent immune attack by the recipient's immune system; (2) immunoisolation to prevent recognition of the islet graft; (3) induction of tolerance; (4) xenotransplantation using islets derived from animals; and (5) gene therapy.  相似文献   

2.
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.  相似文献   

3.
Cell therapy applied to wound healing or tissue regeneration presents a revolutionary realm to which principles of gene engineering and delivery may be applied. One promising application is the transplantation of cells into the wounded tissue to help the tissue repair. However, when cells are transplanted fromin vitro toin vivo, immune rejection occurs due to the immune response triggered by the activation of T-cell, and the transplanted cells are destroyed by the attack of activated T-cell and lose their function. Immune suppressant such as FK506 is commonly used to suppress immune rejection during transplantation. However, such kind of immune suppressants not only suppresses immune rejection in the periphery of transplanted cells but also suppresses whole immune response system against pathogenic infection. In order to solve this problem, we developed a method to protect the desired cells from immune rejection without impairing whole immune system during cell transplantation. Previously, we reported the success of constructing glomerular epithelial cells for removal of immune complex, in which complement receptor of type 1 (CR1) was over-expressed on the membrane of renal glomerular epithelial cells and could bind immune complex of DNA/anti-DNA-antibody to remove immune complex through phagocytosis [1]. Attempting to apply the CR1-expressing cells to cell therapy and evade immune rejection during cell transplantation, we constructed three plasmids containing genes encoding a soluble fusion protein of cytolytic T lymphocyte associated antigen-4 (CTLA4Ig) and an enhanced green fluorescent protein (EGFP). The plasmids were transfected to the above-mentioned glomerular epithelial cells to express both genes simultaneously. Using the clone cells for cell transplantation showed that mice with autoimmune disease prolonged their life significantly as compared with the control mice, and two injections of the cells at the beginning of two weeks resulted in remarkable survivability, whereas it requires half a year and 50 administrations of proteins purified from the same amount of cells to achieve the same effect.  相似文献   

4.
A recently developed pharmacologic means for suppressing acquired immunity by drugs acting on neuroendocrine regulation has been applied to transplantation immune reactions. A number of drugs have been tested singly and in combination for their capacity to suppress the immune response of mice grafted with allogeneic skin. Another model involved newborn F1 hybrid recipients inoculated with spleen cells from donors of parental strains that had been made specifically "unresponsive" by drug and alloantigen treatment. These procedures led to the identification of a combination of four drugs that induced a remarkable delay in allograft rejection and a prolonged unresponsiveness to alloantigens. This combination of drugs also abrogated the graft-vs-host-runting syndrome in newborn hybrid recipients.  相似文献   

5.
Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.  相似文献   

6.
Islet transplantation has considerable potential as a cure for diabetes. However, the difficulties that arise from inflammation and the immunological rejection of transplants must be addressed for islet transplantation to be successful. Alpha 1-antitrypsin (AAT) inhibits the damage on β cells caused by inflammatory reactions and promotes β-cell survival and proliferation. This protein also induces specific immune tolerance to transplanted β cells. However, whether the expression of AAT in β cells themselves could eliminate or decrease immunological rejection of transplants is not clear. Therefore, we established a β cell line (NIT-hAAT) that stably expresses human AAT. Interestingly, in a cytotoxic T lymphocyte (CTL)-killing assay, we found that hAAT reduced apoptosis and inflammatory cytokine production in NIT-1 cells and regulated the Th1/Th2 cytokine balance in vitro. In vivo transplantation of NIT-hAAT cells into mice with diabetes showed hAAT inhibited immunological rejection for a short period of time and increased the survival of transplanted β cells. This study demonstrated that hAAT generated remarkable immunoprotective and immunoregulation effects in a model of β cell islet transplantation for diabetes model.  相似文献   

7.
Nerve allotransplantation provides a limitless source of nerve graft material for the reconstruction of large neural defects. It does require systemic immunosuppression or induction of immune unresponsiveness to prevent allograft rejection. It is unknown whether a greater volume of nerve graft material will increase the risk of rejection or the need for more intensive immunosuppression. This study assessed the relationship between the quantity of nerve tissue transplanted and the magnitude of the resulting immune response. Forty female (BALB/c) mice were randomly assigned to two groups that received either nerve isografts (BALB/c) or nerve allografts (C57BL/6). Each group was then subdivided into two groups that received either one or 10 sciatic nerve graft inlays. Histological and immunological assessments were performed at 10 days after engraftment. Histologic analysis demonstrated greater cellular infiltration in the allograft than the isograft groups but no appreciable difference in infiltration related to quantity of transplanted nerve tissue. In vitro assessments of the immune response using mixed lymphocyte assays and limiting dilution analysis similarly demonstrated a robust immune response to allografts but no effect on quantity of transplanted nerve tissue. These data suggest that larger peripheral nerve allografts may not be subject to increased risk for rejection.  相似文献   

8.
LIGHT-HVEM signaling and the regulation of T cell-mediated immunity   总被引:11,自引:0,他引:11  
LIGHT is a tumor necrosis factor (TNF) superfamily ligand that regulates T cell immune responses by signaling through the herpes virus entry mediator (HVEM) and the lymphotoxin beta receptor (LTbetaR). This review will present a summary of recent advances made regarding the immunobiology of the LIGHT-HVEM and LTbetaR systems. LIGHT has emerged as a potent initiator of T cell co-stimulation signals effecting CTL-mediated tumor rejection, allograft rejection and graft versus host disease. Constitutive expression of LIGHT leads to tissue destruction and autoimmune-like disease syndromes. In contrast to LTalphabeta, LIGHT plays a minimal role in lymphoid tissue development, yet some evidence indicates a role in negative selection in the thymus. These results provide an encouraging profile for the LIGHT-HVEM-LTbetaR axis as a potential target for controlling cellular immune reactions.  相似文献   

9.
Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants.  相似文献   

10.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   

11.
Islet cell transplantation has therapeutic potential to treat type 1 diabetes,which is characterized by autoimmune destruction of insulin-producing pancreatic isletβcells.It represents a minimal invasive approach forβcell replacement,but long-term blood control is still largely unachievable.This phenomenon can be attributed to the lack of islet vasculature and hypoxic environment in the immediate post-transplantation period that contributes to the acute loss of islets by ischemia.Moreover,graft failures continue to occur because of immunological rejection,despite the use of potent immunosuppressive agents.Mesenchymal stem cells(MSCs)have the potential to enhance islet transplantation by suppressing inflammatory damage and immune mediated rejection.In this review we discuss the impact of MSCs on islet transplantation and focus on the potential role of MSCs in protecting islet grafts from early graft failure and from autoimmune attack.  相似文献   

12.
Generating universal human umbilical mesenchymal stem cells (UMSCs) without immune rejection is desirable for clinical application. Here we developed an innovative strategy using CRISPR/Cas9 to generate B2MUMSCs in which human leucocyte antigen (HLA) light chain β2‐microglobulin (B2M) was deleted. The therapeutic potential of B2MUMSCs was examined in a mouse ischaemic hindlimb model. We show that B2MUMSCs facilitated perfusion recovery and enhanced running capability, without inducing immune rejection. The beneficial effect was mediated by exosomes. Mechanistically, microRNA (miR) sequencing identified miR‐24 as a major component of the exosomes originating from B2MUMSCs. We identified Bim as a potential target of miR‐24 through bioinformatics analysis, which was further confirmed by loss‐of‐function and gain‐of‐function approaches. Taken together, our data revealed that knockout of B2M is a convenient and efficient strategy to prevent UMSCs‐induced immune rejection, and it provides a universal clinical‐scale cell source for tissue repair and regeneration without the need for HLA matching in the future.  相似文献   

13.
Pancreatic islet and fetal pancreas allotransplantation has been used to examine the role of the L3T4+ T cell in allograft rejection. Tissues were grafted into recipient animals depleted of peripheral L3T4+ T cells by in vivo administration of GK1.5 (anti-L3T4) monoclonal antibody to ask the question: is there a requirement for the L3T4+ T cell in graft rejection? Data show that the requirement for the L3T4+ T cell depends on either the type of tissue transplanted or type of the antigenic disparity between donor and recipient. Data also indicate that islet allograft acceptance achieved after GK1.5 treatment of the recipient is not due to tolerance induction. We therefore conclude that the cellular requirements for allograft rejection are determined by the type of tissue transplanted and the genetic disparity between donor and recipient.  相似文献   

14.
Xenogeneic tissues are derived from other animal species and provide a source of material for engineering mechanically functional tissue grafts, such as heart valves, tendons, ligaments, and cartilage. Xenogeneic tissues, however, contain molecules, known as antigens, which invoke an immune reaction following implantation into a patient. Therefore, it is necessary to remove the antigens from a xenogeneic tissue to prevent immune rejection of the graft. Antigen removal can be accomplished by treating a tissue with solutions and/or physical processes that disrupt cells and solubilize, degrade, or mask antigens. However, processes used for cell and antigen removal from tissues often have deleterious effects on the extracellular matrix (ECM) of the tissue, rendering the tissue unsuitable for implantation due to poor mechanical properties. Thus, the goal of an antigen removal process should be to reduce the antigen content of a xenogeneic tissue while preserving its mechanical functionality. To expand the clinical use of antigen-removed xenogeneic tissues as biomechanically functional grafts, it is essential that researchers examine tissue antigen content, ECM composition and architecture, and mechanical properties as new antigen removal processes are developed.  相似文献   

15.
16.
The success of helminth parasites is partly related to their ability to modulate host immune responses towards an anti-inflammatory/regulatory phenotype. This ability resides with the molecules contained in the secretome of various helminths that have been shown to interact with host immune cells and influence their function. Consequently, there exists a unique opportunity to exploit these molecules for the prophylactic and therapeutic treatment of human pro- and auto-inflammatory disorders (for example septic shock, transplant rejection and autoimmune disease). In this review, we describe the mechanisms used by the trematode parasite, Fasciola hepatica, to modulate the immune responses of its host and discuss the potent immune-modulatory effects of three individual molecules within the secretome; namely cathepsin L1, peroxiredoxin and helminth defence molecule. With a focus on the requirements from industry, we discuss the strategies by which these molecules may be clinically developed to control human immune responses in a way that is conducive to the prevention of immune-mediated diseases.  相似文献   

17.
Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection.  相似文献   

18.
Spontaneous diabetes mellitus in the BB/W rat is preceded by lymphocytic insulitis that destroys pancreatic beta cells. Cultured pancreatic islets and adrenal cortex from inbred rats of variable MHC were transplanted to RT1/u BB/W rats without allograft rejection. Islet grafts from RT1/u and non-RT1/u rats evidenced lymphocytic insulitis in BB/W recipients that became diabetic or evidenced lymphocytic insulitis within endogenous islets. These findings suggest that BB immune insulitis is not MHC restricted and may be directed against islet transplants from non-RT1/u animals.  相似文献   

19.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

20.
Early investigations into the immune surveillance of chemically-induced sarcomas led to two important concepts in tumour immunobiology: one, tumour rejection can be elicited by immune recognition of tumour antigens; and two, tumours express unique sets of antigens, which are known as tumour-specific antigens. The pioneering studies of Srivastava and colleagues led to the proposal that heat-shock proteins (HSPs) function as ubiquitous tumour-specific antigens, with the specificity residing in a population of bound peptides that identify the tissue of origin of the HSP. However, recent findings, including new data on the cell biology of peptide generation and trafficking, have called into question the specificity of tumour rejection that is induced by HSPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号