首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central effector of visual transduction in retinal rod photoreceptors, cGMP phosphodiesterase (PDE6), is a catalytic heterodimer (alphabeta) to which low molecular weight inhibitory gamma subunits bind to form the nonactivated PDE holoenzyme (alphabetagamma(2)). Although it is known that gamma binds tightly to alphabeta, the binding affinity for each gamma subunit to alphabeta, the domains on gamma that interact with alphabeta, and the allosteric interactions between gamma and the regulatory and catalytic regions on alphabeta are not well understood. We show here that the gamma subunit binds to two distinct sites on the catalytic alphabeta dimer (K(D)(1) < 1 pm, K(D)(2) = 3 pm) when the regulatory GAF domains of bovine rod PDE6 are occupied by cGMP. Binding heterogeneity of gamma to alphabeta is absent when cAMP occupies the noncatalytic sites. Two major domains on gamma can interact independently with alphabeta with the N-terminal half of gamma binding with 50-fold greater affinity than its C-terminal, inhibitory region. The N-terminal half of gamma is responsible for the positive cooperativity between gamma and cGMP binding sites on alphabeta but has no effect on catalytic activity. Using synthetic peptides, we identified regions of the amino acid sequence of gamma that bind to alphabeta, restore high affinity cGMP binding to low affinity noncatalytic sites, and retard cGMP exchange with both noncatalytic sites. Subunit heterogeneity, multiple sites of gamma interaction with alphabeta, and positive cooperativity of gamma with the GAF domains are all likely to contribute to precisely controlling the activation and inactivation kinetics of PDE6 during visual transduction in rod photoreceptors.  相似文献   

2.
We have investigated whether the proteolysis of members of the cGMP binding phosphodiesterases (PDE6, PDE5A1, and PDE10A2) by caspase-3 is modulated by the gamma inhibitor subunit of PDE6. We show here that purified caspase-3 proteolyses PDE6, an enzyme composed of two nonidentical catalytic subunits (termed alpha and beta) with molecular mass of 88 and 84 kDa. The proteolysis of PDE6 produced a single fragment with a molecular mass of 78 kDa. This corresponds to the possible cleavage of the caspase-3 consensus DFVD site (amino acids: 164-168) in the alpha subunit and leads to a 50% decrease in the cGMP hydrolysing activity of the enzyme. The addition of rod PDEgamma to the incubation completely blocked the cleavage of PDE6 by caspase-3. In contrast, rod PDEgamma converted PDE5A1 (molecular mass of 98 kDa) to a better substrate for caspase-3. This resulted in the formation of four major fragments with molecular mass of 82-83, 67, 43, and 34 kDa. In addition, caspase-3 induced an approximately 80% reduction in the activity of a partially purified preparation of PDE5A1 in the presence of rod PDEgamma. Caspase-3 also cleaved PDE10A2 (molecular mass of 95 kDa) to a single 48-kDa fragment. This was consistent with cleavage of the DLFD site (amino acids: 312-315) in PDE10A2. In contrast with both PDE6 and PDE5A1, rod PDEgamma was without effect on this enzyme. These data show that rod PDEgamma interacts with at least two members of the cGMP binding PDE family (PDE5A1 and PDE6) and can exert differential effects on the cleavage of these enzymes by caspase-3.  相似文献   

3.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

4.
Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.  相似文献   

5.
Our previous study has shown that P gamma, the regulatory subunit of cGMP phosphodiesterase (PDE), is ADP-ribosylated by endogenous ADP-ribosyltransferase when P gamma is free or complexed with the catalytic subunits of PDE in amphibian rod photoreceptor membranes. The P gamma domain containing ADP-ribosylated arginines was shown to be involved in its interaction with T alpha, a key interaction for PDE activation. In this study, we describe a possible function of the P gamma ADP-ribosylation in the GTP/T alpha-dependent PDE activation. When rod membranes were preincubated with or without NAD and washed with a buffer containing GTP, the PDE activity of NAD-preincubated membranes was increased by the GTP-washing only to approximately 50% of that of membranes preincubated without NAD. The P gamma release by the GTP-washing from these NAD-preincubated membranes was also suppressed to approximately 50% of that preincubated without NAD. Taking into consideration that approximately 50% of P gamma is ADP-ribosylated under these conditions, these observations suggest that the ADP-ribosylated P gamma cannot interact with GTP/T alpha. We have also shown that a soluble fraction of ROS contains an enzyme(s) to release the radioactivity of [32P]ADP-ribosylated P gamma in concentration- and time-dependent manners, suggesting that the P gamma ADP-ribosylation is reversible. Rod ADP-ribosyltransferase solubilized from membranes by phosphatidylinositol-specific phospholipase C was separated into two fractions by ion-exchange columns. Biochemical characterization of these two fractions, including measurement of the Km for NAD and P gamma, estimation of their molecular masses, ADP-ribosylation of P gamma arginine mutants, effects of ADP-ribosyltransferase inhibitors on the P gamma ADP-ribosylation, and effects of salts and pH on the P gamma ADP-ribosylation, indicates that rod ADP-ribosyltransferase contains two isozymes, and that these two isozymes have similar properties for the P gamma ADP-ribosylation. Our observations strongly suggest that the negative regulation of PDE through the reversible P gamma ADP-ribosylation may function in the phototransduction mechanism.  相似文献   

6.
The unique feature of rod photoreceptor cGMP phosphodiesterase (PDE6) is the presence of inhibitory subunits (Pgamma), which interact with the catalytic heterodimer (Palphabeta) to regulate its activity. This uniqueness results in an extremely high sensitivity and sophisticated modulations of rod visual signaling where the Pgamma/Palphabeta interactions play a critical role. The quaternary organization of the alphabetagammagamma heterotetramer is poorly understood and contradictory patterns of interaction have been previously suggested. Here we provide evidence that supports a specific interaction, by systematically and differentially analyzing the Pgamma-binding regions on Palpha and Pbeta through photolabel transfer from various Pgamma positions throughout the entire molecule. The Pgamma N-terminal Val16-Phe30 region was found to interact with the Palphabeta GAFa domain, whereas its C terminus (Phe73-Ile87) interacted with the Palphabeta catalytic domain. The interactions of Pgamma with these two domains were bridged by its central Ser40-Phe50 region through interactions with GAFb and the linker between GAFb and the catalytic domain, indicating a linear and extended interaction between Pgamma and Palphabeta. Furthermore, a photocross-linked product alphabetagamma(gamma) was specifically generated by the double derivatized Pgamma, in which one photoprobe was located in the polycationic region and the other in the C terminus. Taken together the evidence supports the conclusion that each Pgamma molecule binds Palphabeta in an extended linear interaction and may even interact with both Palpha and Pbeta simultaneously.  相似文献   

7.
Retinal photoreceptor phosphodiesterase (PDE6), a key enzyme for phototransduction, consists of a catalytic subunit complex (Pαβ) and two inhibitory subunits (Pγs). Pαβ has two noncatalytic cGMP-binding sites. Here, using bovine PDE preparations, we show the role of these cGMP-binding sites in PDE regulation. Pαβγγ and its transducin-activated form, Pαβγ, contain two and one cGMP, respectively. Only Pαβγ shows [(3)H]cGMP binding with a K(d) ~ 50 nM and Pγ inhibits the [(3)H]cGMP binding. Binding of cGMP to Pαβγ is suppressed during its formation, implying that cGMP binding is not involved in Pαβγγ activation. Once bound to Pαβγ, [(3)H]cGMP is not dissociated even in the presence of a 1000-fold excess of unlabeled cGMP, binding of cGMP changes the apparent Stokes' radius of Pαβγ, and the amount of [(3)H]cGMP-bound Pαβγ trapped by a filter is spontaneously increased during its incubation. These results suggest that Pαβγ slowly changes its conformation after cGMP binding, i.e. after formation of Pαβγ containing two cGMPs. Binding of Pγ greatly shortens the time to detect the increase in the filter-trapped level of [(3)H]cGMP-bound Pαβγ, but alters neither the level nor its Stokes' radius. These results suggest that Pγ accelerates the conformational change, but does not add another change. These observations are consistent with the view that Pαβγ changes its conformation during its deactivation and that the binding of cGMP and Pγ is crucial for this change. These observations also imply that Pαβγγ changes its conformation during its activation and that release of Pγ and cGMP is essential for this change.  相似文献   

8.
Cook TA  Ghomashchi F  Gelb MH  Florio SK  Beavo JA 《Biochemistry》2000,39(44):13516-13523
PDE6 (type 6 phosphodiesterase) from rod outer segments consists of two types of catalytic subunits, alpha and beta; two inhibitory gamma subunits; and one or more delta subunits found only on the soluble form of the enzyme. About 70% of the phosphodiesterase activity found in rod outer segments is membrane-bound, and is thought to be anchored to the membrane through C-terminal prenyl groups. The recombinant delta subunit has been shown to solubilize the membrane-bound form of the enzyme. This paper describes the site and mechanism of this interaction in more detail. In isolated rod outer segments, the delta subunit was found exclusively in the soluble fraction, and about 30% of it did not coimmunoprecipitate with the catalytic subunits. The delta subunit that was bound to the catalytic subunits dissociated slowly, with a half-life of about 3.5 h. To determine whether the site of this strong binding was the C-termini of the phosphodiesterase catalytic subunits, peptides corresponding to the C-terminal ends of the alpha and beta subunits were synthesized. Micromolar concentrations of these peptides blocked the phosphodiesterase/delta subunit interaction. Interestingly, this blockade only occurred if the peptides were both prenylated and methylated. These results suggested that a major site of interaction of the delta subunit is the methylated, prenylated C-terminus of the phosphodiesterase catalytic subunits. To determine whether the catalytic subunits of the full-length enzyme are methylated in situ when bound to the delta subunit, we labeled rod outer segments with a tritiated methyl donor. Soluble phosphodiesterase from these rod outer segments was more highly methylated (4.5 +/- 0.3-fold) than the membrane-bound phosphodiesterase, suggesting that the delta subunit bound preferentially to the methylated enzyme in the outer segment. Together these results suggest that the delta subunit/phosphodiesterase catalytic subunit interaction may be regulated by the C-terminal methylation of the catalytic subunits.  相似文献   

9.
Phosphorylation of the inhibitory gamma subunit (Pgamma) of rod cGMP phosphodiesterase (PDE6) has been reported to turn off visual excitation without the requirement for inactivation of the photoreceptor G-protein transducin. We evaluated the significance of Pgamma phosphorylation for PDE6 regulation by preparing Pgamma stoichiometrically phosphorylated at Thr(22) or at Thr(35). Phosphorylation of Pgamma at either residue caused a minor decrease--not the previously reported increase--in the ability of Pgamma to inhibit catalysis at the active site of purified PDE6 catalytic dimers. Likewise, Pgamma phosphorylation had little effect on its potency to inhibit transducin-activated PDE6 depleted of its endogenous Pgamma subunits. The strength of Pgamma interaction with the regulatory GAF domain of PDE6 was reduced severalfold upon Pgamma phosphorylation at Thr(22) (but not Thr(35)), as judged by allosteric changes in cGMP binding to these noncatalytic sites on the enzyme (Mou, H., and Cote, R. H. (2001) J. Biol. Chem. 276, 27527-27534). In contrast, the effects of Pgamma phosphorylation on its interactions with activated transducin were much more pronounced. Phosphorylation of Pgamma at either Thr(22) or Thr(35) greatly diminished its ability to bind activated transducin, consistent with earlier work. In situ phosphorylation of Pgamma by endogenous rod outer segment kinases was enhanced severalfold upon light activation, but only approximately 10% of the endogenous Pgamma was phosphorylated. This is attributed to Pgamma being a poor substrate for protein kinases when associated with the PDE6 holoenzyme. We conclude that, contrary to previous reports, Pgamma phosphorylation at either Thr(22) or Thr(35) modestly weakens its direct interactions with PDE6. However, Pgamma phosphorylation subsequent to its dissociation from PDE6 is likely to abolish its binding to activated transducin and may serve to make phosphorylated Pgamma available to regulate other signal transduction pathways (e.g. mitogen-activated protein kinase; Wan, K. F., Sambi, B. S., Frame, M., Tate, R., and Pyne, N. J. (2001) J. Biol. Chem. 276, 37802-37808) in photoreceptor cells.  相似文献   

10.
Photoreceptor cGMP phosphodiesterase (PDE6) is the central enzyme in the visual transduction cascade. The PDE6 catalytic subunit contains a catalytic domain and regulatory GAF domains. Unlike most GAF domain-containing cyclic nucleotide phosphodiesterases, little is known about direct allosteric communication of PDE6. In this study, we demonstrate for the first time direct, inter-domain allosteric communication between the GAF and catalytic domains in PDE6. The binding affinity of PDE6 for pharmacological inhibitors or for the C-terminal region of the inhibitory gamma subunit (Pgamma), known to directly inhibit PDE6 catalysis, was increased approximately 2-fold by ligands binding to the GAF domain. Binding of the N-terminal half of Pgamma to the GAF domains suffices to induce this allosteric effect. Allosteric communication between GAF and catalytic domains is reciprocal, in that drug binding to the catalytic domain slowed cGMP dissociation from the GAF domain. Although cGMP hydrolysis was not affected by binding of Pgamma1-60, Pgamma lacking its last seven amino acids decreased the Michaelis constant of PDE6 by 2.5-fold. Pgamma1-60 binding to the GAF domain increased vardenafil but not cGMP affinity, indicating that substrate- and inhibitor-binding sites do not totally overlap. In addition, prolonged incubation of PDE6 with vardenafil or sildenafil (but not 3-isobutyl-1-methylxanthine and zaprinast) induced a distinct conformational change in the catalytic domain without affecting the binding properties of the GAF domains. We conclude that although Pgamma-mediated regulation plays the dominant role in visual excitation, the direct, inter-domain allosteric regulation described in this study may play a feedback role in light adaptational processes during phototransduction.  相似文献   

11.
We investigated the specificity of CAAX box-related isoprenylation of rod photoreceptor cGMP phosphodiesterase (PDE) subunits expressed in bacteria and the consequences of this modification on rod disk membrane association. Full-length cDNA sequences of the alpha and beta subunits of mouse PDE, inserted into bacterial pET expression vectors, were overexpressed as fusion proteins containing 28 (bMP-alpha) and 26 (bMP-beta) additional amino acid residues at their N termini. Both fusion proteins were overexpressed and stored in inclusion bodies. Purified bMP-alpha and bMP-beta were recognized by bovine PDE-specific polyclonal antibodies, but did not associate with depleted rod disk membranes and were catalytically inactive. Using bovine brain or retina extracts as sources of protein prenyltransferases and tritiated farnesyl- or geranylgeranylpyrophosphate as donors, bMP-alpha (CAAX sequence CCIQ) was exclusively farnesylated, and bMP-beta (CAAX sequence CCIL) was exclusively geranylgeranylated. After isoprenylation, bMP-alpha and bMP-beta each associated with rod photoreceptor outer segment disk membranes under isotonic, but not under hypotonic, conditions. The results indicate that isoprenylated bMP-alpha and bMP-beta each interact independently with membranes and that isoprenylation is the key modification that facilitates membrane association.  相似文献   

12.
As the central effector of visual transduction, the regulation of photoreceptor phosphodiesterase (PDE6) is controlled by both allosteric mechanisms and extrinsic binding partners. However, the conformational changes and interactions of PDE6 with known interacting proteins are poorly understood. Using a fluorescence detection system for the analytical ultracentrifuge, we examined allosteric changes in PDE6 structure and protein-protein interactions with its inhibitory γ-subunit, the prenyl-binding protein (PrBP/δ), and activated transducin. In solution, the PDE6 catalytic dimer (Pαβ) exhibits a more asymmetric shape (axial ratio of 6.6) than reported previously. The inhibitory Pγ subunit behaves as an intrinsically disordered protein in solution but binds with high affinity to the catalytic dimer to reconstitute the holoenzyme without a detectable change in shape. Whereas the closely related PDE5 homodimer undergoes a significant change in its sedimentation properties upon cGMP binding to its regulatory cGMP binding site, no such change was detected upon ligand binding to the PDE6 catalytic dimer. However, when Pαβ was reconstituted with Pγ truncation mutants lacking the C-terminal inhibitory region, cGMP-dependent allosteric changes were observed. PrBP/δ bound to the PDE6 holoenzyme with high affinity (K(D) = 6.2 nm) and induced elongation of the protein complex. Binding of activated transducin to PDE6 holoenzyme resulted in a concentration-dependent increase in the sedimentation coefficient, reflecting a dynamic equilibrium between transducin and PDE6. We conclude that allosteric regulation of PDE6 is more complex than for PDE5 and is dependent on interactions of regions of Pγ with the catalytic dimer.  相似文献   

13.
Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.  相似文献   

14.
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFa F163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET (2) assays. BRET (2) ratios of the wild type GAFa fusion protein, but not GAFa F163A, increased in the presence of cGMP but not cAMP. Higher basal BRET (2) ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFa F163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET (2) technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET (2) sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.  相似文献   

15.
The retinal degeneration mouse (gene symbol, rd) is an animal model for certain forms of human hereditary retinopathies. Recent findings of a nonsense mutation in the rd mouse PDE beta-subunit gene (Pdeb) prompted us to investigate the chromosome locations of the mouse and human genes. We have utilized backcross analysis in mice to verify and define more precisely the location of the Pdeb locus 6.1 +/- 2.3 cM distal of Mgsa on mouse chromosome 5. We have determined that the human gene (PDEB) maps to 4p16.3, very close to the Huntington disease (HD) region. Analysis of the comparative map for mice and humans shows that the mouse homologue of the HD gene will reside on chromosome 5. Linkage of the mouse Pdeb locus with other homologues in the human 4p16.3 region is maintained but gene order is not, suggesting at least three possible sites for the corresponding mouse HD gene.  相似文献   

16.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

17.
18.
cGMP phosphodiesterase in rod and cone outer segments of the retina   总被引:11,自引:0,他引:11  
Immunochemical, chromatographic, and sodium dodecyl sulfate gel electrophoresis studies suggest that immunologically related but distinct cyclic GMP phosphodiesterases are present in rod and cone outer segments of the retina. Immunocytochemical studies demonstrated that one monoclonal antibody (ROS-1) recognized a determinant present in both rod and cone outer segments, while another monoclonal antibody (ROS-2) only recognized rod outer segments. At least two peaks of phosphodiesterase activity could be separated by high-performance anion-exchange chromatography of retinal extracts. Both peaks were recognized by ROS-1. None of the first peak and only 80% of the second broad peak of activity were recognized by ROS-2. High-performance liquid chromatography profiles from human fovea and several other types of cone-enriched retina showed that most of the activity was contained in the first peak, suggesting that this activity was derived from cone outer segments. Conversely, the phosphodiesterase in rod-enriched preparations migrated predominately in the second peak. Sodium dodecyl sulfate-gel electrophoresis indicated that this first peak contained a single large immunoreactive polypeptide (alpha') that migrated with the same mobility as a phosphorylase b standard and was distinct from the more rapidly migrating large immunoreactive polypeptides (alpha and beta) present in a broad second peak. The second peak could be further separated into a first part that contained a doublet of two immunoreactive polypeptides (alpha and beta) that migrated faster than phosphorylase b and a later part that contained only the most rapidly migrating polypeptide (beta). All of the peaks could be activated by histone or transducin:GTP, implying that all contained a small 11-kDa inhibitory subunit (gamma) of the enzyme. Since the larger (alpha') and smaller (beta) immunoreactive polypeptides could be completely separated from the alpha polypeptide and from each other, yet still retain the ability to be activated by histone or transducin, the data suggest that only a single species of polypeptide-inhibitor complex (e.g. alpha' gamma, alpha gamma, or beta gamma) was required for histone or transducin:GTP activation.  相似文献   

19.
Post-translational modifications of GTPases from the Ras superfamily enable them to associate with membrane compartments where they exert their biological activities. However, no protein acting like Rho and Rab dissociation inhibitor (GDI) that regulate the membrane association of Rho and Rab GTPases has been described for Ras and closely related proteins. We report here that the delta subunit of retinal rod phosphodiesterase (PDEdelta) is able to interact with prenylated Ras and Rap proteins, and to solubilize them from membranes, independently of their nucleotide-bound (GDP or GTP) state. We show that PDEdelta exhibits striking structural similarities with RhoGDI, namely conservation of the Ig-like fold and presence of a series of hydrophobic residues which could act as in RhoGDI to sequester the prenyl group of its target proteins, thereby providing structural support for the biochemical activity of PDEdelta. We observe that the overexpression of PDEdelta interferes with Ras trafficking and propose that it may play a role in the process that delivers prenylated proteins from endomembranes, once they have undergone proteolysis and carboxymethylation, to the structures that ensure trafficking to their respective resident compartments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号