首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global and single unit responses of the superior olivary complex were investigated during ultrasonic stimulation at different frequencies in two species of bats from the Vespertilionidae, which emit frequency-modulated signals and the Rhinolophidae, which utilize almost monochromatic (80 ± 1 kHz) echolocation cries. Maximal sensitivity to ultrasound in the Vespertilionidae was found at frequencies of 10–40 kHz, and in the Rhinolophidae also within the range 10–40 kHz but with a second increase in sensitivity in the region 82–86 kHz. Sharply tuned neurons were more numerous in the Rhinolophidae than in the Vespertilionidae. Neurons whose response in the echolocation frequency band changed in character depending on the fill frequency of the stimulus were found in Rhinolophidae: a phasic discharge occurs over a wide range of frequencies and a tonic discharge at the characteristic frequency; the latter was also observed over a limited range of intensities.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 33–39, January–February, 1973.  相似文献   

2.
Between 4 and 16 January 1996, during a period of cool weather, we studied the emergence and foraging behavior of Molossus ater at a site near Akumal, in the Yucatan Peninsula in Mexico. The bats, a colony of at least 32 individuals, roosted in a north-facing cinder block wall, and emerged about sunset. Emerging bats were usually clustered in time, while those returning usually were not. Radio-tracking revealed that the bats foraged for short periods (mean 26.8 min) and captures of returning individuals indicated that 27 of 28 had fed, taking, on average, 4.4 g of insects, mainly hydrophilid beetles. On some nights, few or none of the radio-tagged bats emerged from the roost. Calculations concerning the costs of flight and roosting show that they were more than covered by the energy intake the bats achieved. Molossus ater have high aspect ratio (8.3–9.1) wings and high wing-loadings of 17.55–24.15 N/m2. When searching for prey, these bats produce long (12.3 ms), narrowband(3.8 kHz), echolocation calls that sweep from 27.6–23.8 kHz. Energy was not limiting for these bats at the time of our study.  相似文献   

3.
The concentration of the juvenile hormone-binding protein (JHB) in hemolymph was determined throughout the last nymphal instar. It was found to be 3.9 μM at the molt to the instar, rising to 13 μM by mid-instar, and dropping to 6.7μM the day before emergence. Endocrine control of its production during the last nymphal instar could not be established. The apparent juvenile hormone esterase (JHF) activity was low at the molt to the last instar, but rose about fivefold by mid-instar, and then modestly declined. On the day of emergence, JHF activity rose to the highest level observed. A four- to fivefold increase in absolute JHF activity was determined during the first half of the last nymphal instar. This increase is not regulated by JH. Removal of the JHB from hemolymph samples by precipitation with a polyclonal specific antibody increased the JHF activity up to 1,000-fold. Thus, changes in the concentrations of JHB can affect the apparent activity of JHE, which is unrelated to the production or degradation of the JHF.  相似文献   

4.
Rodents are well known for the production of physically quite different audible and ultrasonic cries. Both of these cries are known to be produced in the larynx, but the anatomy of the larynx is practically unknown, it thus being difficult to analyse how the cries are produced. The anatomy of the larynx of Mus musculus is described in detail and is found to be essentially typical of that of other mammals that can fix the thorax and make independent use of the forelimbs. Unlike the larynx of microchiropteran bats, no modifications for ultrasound production are apparent, although the laryngeäl structure is ideal for the production of audible cries. However, the audible and ultrasonic cries differ so markedly that they are unlikely to be produced by the same mechanism. The lack of laryngeal specialization therefore makes the ultrasound production mechanism largely an enigma.  相似文献   

5.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

6.
Summary The auditory characteristics of the arctiid moth,Cycnia tenera were examined using two behavioral criteria, sound production and flight cessation. The majority of the individuals tested indicated a maximum sensitivity to frequencies between 30 and 50 kHz although there is a substantial degree of interindividual variation.Spectral analyses of the echolocation/hunting cries of two species of sympatric, insectivorous bats,Eptesicus fuscus andMyotis lucifugus reveal maximally intense spectral peaks at 29.3 and 41.9 kHz, respectively.The audiograms offer a behavioral correlation to neural studies done with other species of moths and illustrate the existence of behaviorally expressed intensity discrimination in these insects. The variation evident between individuals may represent the differential response characteristics reported for free-flying tympanate moths in field conditions.I am indebted to Ms K. Van Every for her invaluable and patient assistance during the field portion of this study and to Dr. R. Robertson for his permission to use the facilities at the Queen's University Biology Station. Dr. M.B. Fenton provided me with financial support and much appreciated advice for the project. I also thank Dr. Fenton for the tapes ofE. fuscus that he made. The helpful criticisms of Drs. G.K. Morris, G.E. Kerr, A. Michelsen and an anonymous reviewer were gratefully appreciated. I thank Dr. J.A. Simmons for Fig. 1.  相似文献   

7.
Summary The echolocation and hunting behavior ofPipistrellus kuhli was studied in the field using multi-exposure photography synchronized with high-speed tape recordings. During the search phase, the bats used 8–12 ms signals with sweeps (sweep width 3–6 kHz) and pulse intervals near 100 ms or less often near 200 ms (Figs. 1 and 2). The bats seemed to have individual terminal frequencies that could lie between 35 and 40 kHz. The duty cycle of searching signals was about 8%. The flight speed of hunting bats was between 4.0 and 4.5 m/s. The bats reacted to insect prey at distances of about 70 to 120 cm. Given the flight speed, the detection distance was estimated to about 110 to 160 cm. Following detection the bat went into the approach phase where the FM sweep steepened (to about 60 kHz bandwidth) and the repetition rate increased (to about 30 Hz). The terminal phase or buzz, which indicates prey capture (or attempted capture), was composed of two sections. The first section contained signals similar to those in the approach phase except that the pulse duration decreased and the repetition rate increased. The second section was characterized by a sharp drop in the terminal frequency (to about 20 kHz) and by very short pulses (0.3 ms) at rates of up to 200 Hz (Figs. 1 and 3). Near the beginning of the buzz the bat prepared for capturing the prey by extending the wings and forming a tail pouch (Fig. 4). A pause of about 100 ms in sound emission after the buzz indicated a successful capture (Fig. 4). Pulse duration is discussed in relation to glint detection and detection distance. It is argued that the minimum detection distance can be estimated from the pulse duration as the distance where pulse-echo overlap is avoided.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

8.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

9.
幼小蝙蝠下丘神经元的听反应特性   总被引:8,自引:0,他引:8  
孙心德 《兽类学报》1993,13(2):98-103
实验在出生6—8天的8只幼龄鲁氏菊头蝠(Rhinolophus rouxi)上进行。使用玻璃微电极记录中脑下丘听神经元对超声信号的反应。共观察了162个听单位,它们对超声反应的最佳频率分布范围为25.8—60.9千赫,多数集中在43.0—47.0千赫。反应的潜伏期在6.0—38.0毫秒,平均为15.4±5.2毫秒。反应的最低阈值在25—84dB,平均为69.8±10.3dB.这些神经元对超声刺激的调谐曲线都较宽阔,故Q10-dB值都较小。当微电极由下丘表面垂直下插时,所记录到的神经元的最佳频率与记录深度之间不存在相关关系,即没有音调筑构现象。听神经元的这些特性与同种成年动物构成显著差异。  相似文献   

10.
Correlation of respiration and ultrasound production in rodents and bats   总被引:1,自引:0,他引:1  
Audible and ultrasonic cries of five species of myomoph rodent pups were generally found to be closely associated with the onset of the expiratory phase of respiration (recorded with a hot wire anemometer). Consideration of the patterns found and possible laryngeal mechanisms may help to explain the origin of the ultrasounds which differ considerably in physical structure from the typically "vocal" audible cries. Echolocation cries of the constant frequency bat Rhinolophus luctus were always associated with expiration, whereas the much shorter cries of two vespertilionids, Eptesicus serotinus and Plecotus auritus , although occurring at the onset of expiration at low repetition rates, could occur throughout the respiratory cycle at the highest rates recorded. The patterns found may well be adapted for the echolocation requirements of these bats. Using a simpler technique the long ultrasounds of adult rats were also found to be associated with expiration.  相似文献   

11.
Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens). Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe). A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya). Relative to the intermediate-sized savanna population (Clade 2), these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique) or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa). Sympatry between divergent clades (Clade 1 and Clade 2) at Lutope-Ngolangola Gorge (NW Zimbabwe) is attributed to recent range expansions. We propose an “Allometric Speciation Hypothesis”, which attributes the evolution of this species complex of bats to divergence in constant frequency (CF) sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz) represents the allometric effect of adaptive divergence in skull size, represented in the evolution of gigantism and dwarfism in habitat islands.  相似文献   

12.
Echolocation calls from 10 individually marked female northern bats (Eptesicus nilssonii) were recorded as the bats foraged at three distinct feeding sites (territories) near their maternity roost in southern Sweden (57° N). In addition, recordings of unmarked bats were made in northern Sweden (65° N). The frequency at maximum amplitude of “search phase” echolocation pulses was bimodally distributed, with peaks around 29–30 kHz and 31–32 kHz and was negatively correlated with pulse duration. The frequency at maximum amplitude was related to flight altitude (bats used higher frequencies when they flew near the ground) and also differed among the feeding sites. Hence, much of the variation, probably including regional differences, was behavioural and is interpreted as short term (in the order of s or min) adaptation to current foraging situations. Variation among individual bats, caused by age and size, seemed to be of less importance. Individuals did not use exclusive frequency bands.  相似文献   

13.
1. The development of vocalization and hearing was studied in Sri Lankan horseshoe bats (Rhinolophus rouxi) during the first postnatal month. The young bats were caught in a nursing colony of rhinolophids in which birth took place within a two week period. 2. The new-born bats emitted isolation calls through the mouth. At the beginning these calls consisted of pure tones with frequencies below 10 kHz (Fig. 1). During the first postnatal week the call frequency increased to about 15 kHz, and the fundamental was augmented by two to four harmonics. No evoked potentials to pure tone stimuli could be elicited in the inferior colliculus of this age group, i.e., auditory processing at the midbrain level was not demonstrable. 3. Evoked potentials were first recorded in the second week, broadly tuned to 15-45 kHz, with a maximum sensitivity between 15-25 kHz. In the course of the second week, however, higher frequencies up to 60 kHz became progressively incorporated into the audiogram (Fig. 3). The fundamental frequency of the multiharmonic isolation calls, emitted strictly through the mouth, increased to about 20 kHz. 4. In the bats' third postnatal week an increased hearing sensitivity (auditory filter) emerged, sharply tuned at frequencies between 57 and 60 kHz (Fig. 4e). The same individuals were also the first to emit long constant frequency echolocation calls through the nostrils (Fig. 4c). The energy of the calls was arranged in harmonic frequency bands with the second harmonic exactly tuned to the auditory filter. These young bats continued to emit isolation calls through the mouth, which were, however, not harmonically related to the echolocation calls (Fig. 4b, d). 5. During the fourth week, both the auditory filter and the matched echolocation pulses (the second harmonic) shifted towards higher frequencies (Fig. 5). During the fifth week the fundamental frequency of the calls was progressively attenuated, and both the second harmonic of the pulses and the auditory filter reached the frequency range typical for adult bats of 73-78 kHz (Fig. 6). 6. The development of audition and vocalization is discussed with regard to possible interactions of both subsystems, and their incorporation into the active orientation system of echolocation.  相似文献   

14.
1. A midline region of brain dorsal and anterior to the corpus callosum, presumably anterior cingulate cortex, has been explored for its role in the production of vocalization in the mustached bat, Pteronotus p. parnelli. 2. Vocalizations elicited by microstimulation were virtually indistinguishable from natural biosonar sounds. The spectral content, relative intensity of harmonic components, and durations of emitted pulses are comparable to spontaneous emissions. 3. The frequencies of elicited vocalizations were within the range typically used by the mustached bat during Doppler-shift compensation. The frequency of the second-harmonic constant-frequency component (CF2) covered the range from 57-62 kHz, but was most commonly emitted at frequencies of 59-61 kHz. 4. An increase in the frequency of vocalizations over a number of consecutive pulses towards a steady-state plateau is evident in both spontaneous vocalizations and emissions elicited by microstimulation just above threshold. Increasing the stimulus intensity caused the frequency of emissions to approach the steady state more rapidly. 5. The anterior cingulate cortex appears to be organized topographically for increasing frequency of elicited biosonar sounds along a rostrocaudal axis. The area from which biosonar emissions were elicited was overrepresented for a 2 kHz band of frequencies just below the bats' CF2 resting frequency. Audible vocalizations with a complex spectrum resembling social cries can also be elicited by microstimulation, but only in an area that is adjacent and posterior to the biosonar region. 6. Some examples of both elicited and spontaneous vocalizations contained a relative intensity pattern of the harmonic components which deviated from the typical pattern. This suggests that mustached bats are capable of actively altering the spectrum of their pulses to subserve different tasks in echolocation.  相似文献   

15.
Short-tailed bats (Mystacina sp.) were rediscovered in Nothofagus dominant rainforest in the Eglinton Valley in February 1997, representing the first records of these bats in Fiordland since 1871. Breeding females, adult males and juveniles were captured. This paper presents preliminary observations of taxonomy, echolocation calls, population size, habitat use, activity patterns, home range size, movements, roosting, and singing behaviour. Compared to lesser short- tailed bats (M. tuberculata) on Codfish and Little Barrier Islands, the Fiordland bats were heavier, had larger wings and smaller ears, and were sexually dimorphic. The Mystacina echolocation calls were of low intensity (quiet), making them difficult to detect. Call durations in free-flying bats were only 1.0-2.9 ms long. In a comparative trial the majority of calls that were detected at 25 kHz using the Batbox III bat detector were not recorded at 40 kHz, indicating that there was little overlap with the calls of long-tailed bats (Chalinolobus tuberculatus). In February, roosting groups numbered from 107 to 279 individuals and the bats ranged over 130 km(2) of the valley. Bats began emerging c. 20 minutes after sunset and were active at the roost sites throughout the night. Radio-tagged bats were active for an average of 372 minutes at a time. All roosts were in large diameter (67-146 cm dbh) red beech (N. fusca) trees.  相似文献   

16.
EQUIPMENT REVIEW     
Chris Watson 《Bioacoustics.》2013,22(2):175-177
ABSTRACT

We studied the echolocation behaviour of Nycticeius cubanus in the field in western Cuba. During hunting, N. cubanus search for insects emitting cries that sweep from 80 to 40 kHz in 4 to 12 ms. Search call characteristics correlate with the clutter structure of the hunting areas. Bats hunting in an uncluttered space broadcast longer and narrower signals, while bats hunting in cluttered space broadcast shorter and broadband signals. Longer calls were emitted with longer intervals while the duty cycle was kept below 15 % during search and approach phases. The call's minimal frequency remained about 43 kHz showing variation coefficients of less than 3%. As a consequence, bandwidth correlates positively with the maximal frequency. Calls emitted by different sympatric individuals are accurately classified by sender using a discriminant function analysis, suggesting vocal signatures in N. cubanus. The statistical analysis of several passes of calls broadcast during the hunting activity of a single individual, demonstrates a high intra-individual plasticity in vocal signatures and points to a dynamic system.  相似文献   

17.
1. The maximum acoustic gain of the external ear in Macroderma gigas was found to be 25-30 dB between 5-8 kHz and in Nyctophilus gouldi it reached 15-23 dB between 7-22 kHz. Pinna gain reached a peak of 16 dB near 4.5-6 kHz in M. gigas and 12-17 dB between 7-12 kHz in N. gouldi, with average gain of 6-10 dB up to 100 kHz. Pinna gain curves resemble that of a finite conical horn, including resonance. 2. The directional properties of the external ear in both species result from sound diffraction at the pinna face, as it approximates a circular aperture. The frequency dependent movement of the acoustic axis in azimuth and elevation is attributed to the asymmetrical structure of the pinnae. 3. Evoked potentials and neuronal responses were studied in the inferior colliculus. In M. gigas, the neural audiogram has sensitivity peaks at 10-20 kHz and 35-43 kHz, with extremely low thresholds (-18 dB SPL) in the low frequency region. In N. gouldi, the neural audiogram has sensitivity peaks at 8-14 kHz (lowest threshold 5 dB SPL) and 22-45 kHz. Removal of the contralateral pinna causes a frequency dependent loss in neural threshold sensitivity of up to 10-15 dB in both species. 4. The high frequency peak in the audiogram coincides with the sonar energy band in both species, whereas the low frequency region is used for social communication. Highly sensitive low frequency hearing is discussed in relation to hunting in bats by passive listening.  相似文献   

18.
Simultaneous measures of oxygen consumption and evaporative water loss (EWL) were made in two species of temperate-zone vespertilionid bat ( Plecotus auritus and Myotis daubentoni ; mean body mass 9.12 and 10.12g, respectively) at ambient temperatures (Ta) of 5, 15 and 25°C and variable vapour pressure deficit. EWL was directly dependent on vapour pressure deficit and oxygen consumption and inversely dependent on Ta. EWL was significantly greater in P. auritus than in M. daubentoni. A model for EWL in P. auritus under a variety of environmental conditions (5–25°C and 20–80% relative humidity) suggested that EWL from bats in shallow summer torpor will be lowest at low Ta, and that, except at low (> 50%) relative humidity, EWL from euthermic bats will be lowest at high Ta. At low relative humidity (< 20%), resting bats could lose over 30% of body mass per day (24 h) through evaporation. At high Ta (> 25°C), EWL from euthermic bats could be over 65% lower at high (> 80%) compared to low (< 20%) relative humidity. In bats in shallow summer torpor at low (5°C) Ta the equivalent saving was > 96%. At low relative humidity predicted EWL from bats in shallow summer torpor was 34 to 81% of that from euthermic bats, and at low Ta and high relative humidity was only 2%. In the wild, M. daubentoni has freer access to drinking water than does P. auritus and yet EWL at rest was higher in the latter species. We suggest that post-prandial dumping of urinary water by M. daubentoni leads to a limit in the amount of body water available to this species to cover evaporative losses once within the day roost, which in turn has led to an adaptation of physiology towards the minimization of EWL when at rest.  相似文献   

19.
The intermediate leaf-nosed bat ( Hipposideros larvatus ) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis , which is suggested to be a species distinct from Hipposideros larvatus . Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 119–130.  相似文献   

20.
Summary A method to construct and calibrate earphones (physiologically) suitable for small bats and probably other small mammals is described. Particular emphasis was placed on getting a flat frequency response curve between 75kHz and 110kHz, the most important range forRhinolophus ferrumequinum. Below 60kHz the slope declined by about 30dB down to the audible frequency range. The maximal output without harmonic distortion (30dB down) was 80–90dB SPL, but up to 115dB SPL could be attained when accepting harmonics.Supported by the grants: Stiftung Volkswagenwerk, 111858; Deutsche Forschungsgemeinschaft, Schl 117/4; Schn 138/6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号