首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic separation of plasma lipoproteins in agarose gel   总被引:83,自引:0,他引:83  
A method has been developed for the separation of serum or plasma lipoproteins by electrophoresis in an agarose-agar gel mixture. The gel is applied to the surface of a thin polyester photographic film strip. With minor alterations in technique either single samples on individual strips or many samples on one large sheet may be processed. After fixation and dehydration the transparent film is stained with Sudan Black B and washed with water. The finished electrophoretogram can be obtained in 5 hr and consists of widely separated bands of lipoprotein fractions on a colorless transparent background, ideally suited for scanning with a densitometer. Plasma samples from different subjects show pre-beta lipoproteins of different mobilities. An effect of gel concentration on the extent of lipoprotein migration is demonstrated. The clearcut separation of lipoproteins by this method will facilitate the classification of hyperlipoproteinemias and improve quantitative estimates of lipoprotein distribution.  相似文献   

2.
Cholesterol is found in four major classes of blood particles including chylomicrons, very low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). The most studied fraction is LDL as it is most closely associated with heart disease. The challenge in current methods of analysis is the determination of the cholesterol in the individual lipoprotein fractions. Accordingly, the critical step in any analysis is the complete separation of the lipoprotein fractions. In this work, enhanced selectivity for the LDL fraction was achieved by the covalent binding of dextran sulfate (DS) to the gold surface of a thickness shear-mode acoustic wave sensor. The thickness and surface concentration of the DS layer was estimated by in situ ellipsometry to be 219 A and 0.8 ng/mm(2), respectively, but it was difficult to construct the sensing layer reproducibly. The DS coated sensor was ten times more responsive to LDL than the other lipoprotein (LP) fractions. The sensor was a main component in a flow injection analysis system that exposed LDL, VLDL and HDL to not only the DS layer, but also to the underlayers used in the construction of the DS layer. A possible regeneration solution was found which would rinse the LDL from the layer, restoring the sensor for repeated use. Frequency shifts from LP absorption into the DS layer were corrected for dissipative losses through the DS layer using an oscillator circuit equipped with an automatic gain control feature.  相似文献   

3.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

4.
The selective and reversible adsorption of bovine low density lipoproteins (LDL) by heparin-Sepharose has been exploited as the critical step in a procedure for the preparative isolation of very low density lipoproteins (VLDL)/chylomicrons, LDL, and high density lipoproteins (HDL) from bovine plasma. Molecular size exclusion chromatography and isopycnic density gradient separation steps are also involved in the method described. The resulting HDL and LDL fractions are free from contamination by one another as judged by electrophoretic mobility in agarose gels. The major lipid and apolipoprotein compositions of the three resolved lipoprotein classes have been determined.  相似文献   

5.
A group of 14 adult male rhesus monkeys was maintained on a low cholesterol-high fat diet. Periodically, animals were fasted and blood samples were taken for characterization of the plasma lipoproteins. Complete separation of individual plasma lipoprotein classes was not achieved by traditional sequential ultracentrifugation techniques. Rather, initial separation of lipoprotein classes according to size was effected and density centrifugation was used subsequently for further separation. At least six lipoprotein fractions were identified, each of which was unique as defined by the properties of size, density (d), and electrophoretic mobility. These lipoprotein fractions were characterized by determination of chemical compositions and apoprotein patterns. The lipoproteins present in highest concentration in these monkeys were designated as region IV lipoproteins. This fraction had alpha-migration on agarose electrophoresis, 1.063 < d < 1.225, and the size, composition, and apoprotein pattern characteristic of HDL. No fewer than three fractions were identified with densities that overlapped the 1.019 < d < 1.063 range. Of these, the fraction designated as region III lipoproteins was present in highest concentration, had beta-migration by agarose electrophoresis, a predominant B apoprotein, and a chemical composition and size characteristic of LDL. Two larger subfractions, identified as region II lipoproteins, were separated from each other at a density of 1.050 g/ml. Agarose electrophoresis showed that the fraction with d < 1.050 had a migration intermediate between beta and pre-beta. The chemical composition and apoprotein pattern were consistent with the possibility that these lipoproteins were remnants of VLDL catabolism. The fraction with d > 1.050, had pre-beta mobility and a size and composition similar to the Lp(a) lipoprotein in plasma of human beings. At least two VLDL subfractions, identified as region I and IIa lipoproteins, were found although both were present in very low concentrations. Region I lipoproteins were larger and contained relatively more cholesteryl ester and more of the apoproteins that migrated with the mobility of apo-B and arg-rich apoprotein in SDS-polyacrylamide gel electrophoresis. Some of the region I lipoproteins were beta-migrating by agarose electrophoresis. These results suggested the possibility that a beta-migrating VLDL was present in these normal animals.  相似文献   

6.
A very short run time and small sample volumes in the separation of lipoproteins by preparative ultracentrifugation are needed for several investigations. Recently, a very fast sequential separation method was described that needs only 100 min for one run in a centrifugal field of 625 000 × g. We studied the influence of centrifugal fields of this dimension on lipoprotein separation and lipoprotein particle integrity using a Beckman OptimaTM TLX ultracentrifuge with a TLA-120.2 rotor. Rotor speed (120/90/60/30 · 103 rev./min) and run time (100 min/3 h/6.7 h/27 h) were selected in such a way that the product of centrifugal field and run time remained constant. The first conditions correspond to the very fast ultracentrifugation (VFU) procedure with a centrifugal field of 625 000 × g. Thirty different plasma samples covering a wide range of lipid and protein concentrations were separated in the course of two centrifugal runs at densities of 1.006 and 1.063 kg/l which yielded very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and the subnatant of low-density lipoproteins, including high-density lipoproteins (HDL) and concomitant sedimented plasma proteins. The major lipid components of the lipoproteins, triacylglycerols, free and esterified cholesterol, phospholipids and the apolipoproteins B and A-I, were estimated considering the masses of the tube contents after a slicing procedure. Measurements of lipids and proteins showed a very good recovery of better than 94% and 91%, respectively, and precision-within-series (coefficient of variation) of better than 4.2% and 6.5%, respectively. The effects of the rotor speed on the lipoprotein structure appeared to be weak. With increasing rotor speed, VLDL and LDL lipid constituents principally tended to decrease, whereas they increased in the subnatant of the LDL-run. The mean lipoprotein mass composition, considering the mass percentage of each measured particle constituent, did not show significant alterations. Total protein decreased in VLDL and in LDL and increased in the subnatant of the LDL-run. As checked by an enzyme-linked immunosorbent assay (ELISA) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein effects were due to nearly complete disappearence of contaminating plasma proteins, especially albumin as the major contamination of VLDL and LDL. The apolipoproteins (apo) B-100, A-I, E and C-I to C-III remained nearly unaffected. The main advantages of VFU were the very short run time (cumulative flotation time is 3.4 h) and the elimination of albumin without repeated runs. The procedure was suitable for the assessment of lipid and protein constituents in lipoproteins from very small plasma samples (500 μl).  相似文献   

7.
The plasma lipoproteins of estrogen-treated and untreated sexually immature hens have been compared with respect to their concentration in plasma, protein and lipid composition, particle size, and and apoprotein composition. Administration of diethylstilbestrol resulted in a 400-fold rise in the concentration of very low density lipoprotein (VLDL), a 70-fold rise in low density lipoprotein (LDL), and a marked reduction in high density lipoprotein (HDL) protein. It also resulted in the production of LDL and HDL which were enriched in triacylglycerol, while the proportion of cholesterol in all three lipoprotein fractions decreased. In contrast to the lipoproteins from untreated birds, lipoproteins of density less than 1.06 g/ml from estrogen-treated birds were not clearly separable into discrete VLDL and LDL fractions, but appeared to be a single ultracentrifugal class. The apoprotein composition of VLDL and LDL from untreated birds differed from each other; however, the apoprotein patterns of VLDL and LDL from estrogen-treated birds were indistinguishable: both contained a large amount of low molecular weight protein in addition to the high molecular weight component that predominates in the untreated state. The apoprotein composition of HDL was also markedly altered by estrogen administration: the 28,000 mol. wt. protein (apo A-I) decreased in amount from 65% to less than 5% of the total, while a low molecular weight (Mr = 14,000) protein and as yet poorly defined high molecular weight components became predominant. These observations indicate that the hyperlipidemia induced by estrogen administration is accompanied by marked alterations, both qualitative and quantitative, in the plasma lipoproteins.  相似文献   

8.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

9.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

10.
We studied the in vitro distribution of macrocyclic lactones (MLs), lipophilic anthelmintic drugs, in the plasma of several animal species including humans. First, in vitro spiking of goat plasma was performed with ivermectin, moxidectin, abamectin, doramectin, or eprinomectin. In parallel, goats were treated with subcutaneous injection of ivermectin. Then, cow, sheep, rabbit, pig, and human plasma were spiked with moxidectin. Four fractions were separated using KBr density gradient ultracentrifugation: very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and lipoprotein-deficient fraction. Cholesterol was analyzed by enzymatic assay and MLs by high-performance liquid chromatography. An average of 96% of MLs was associated with lipoproteins. The five MLs studied distributed similarly into goat plasma fractions with a preferential association with HDL (80-90%). Ivermectin partitioning in goat plasma was similar after in vitro spiking and in vivo treatment. In species displaying various lipoprotein profiles, moxidectin was also mainly associated with HDL. However, in human plasma, moxidectin was associated with a lesser extent to HDL (70%) and more to LDL (22%) when compared to other animal species. A relation between the plasma cholesterol content and pharmacokinetics of the drug is suggested. Our finding will allow further exploration of intestinal lymphatic absorption and milk elimination of these compounds-mechanisms in which lipoproteins are involved. In addition, possible improvements of new drug delivery systems are suggested.  相似文献   

11.
We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migrate according to their net-charge between HDL and VLDL, because ITP has negligible molecular sieve effects. Three HDL subfractions were obtained which were designated fast-, intermediate-, and slow-migrating HDL. To further characterize these HDL subfractions, a newly developed free-solution ITP (FS-ITP)-system was used, that allows micro-preparative separation of human lipoproteins directly from whole plasma (B?ttcher, A. et al. 1998. Electrophoresis. 19: 1110-1116). The fractions obtained by FS-ITP were analyzed for their lipid and apolipoprotein composition and by two-dimensional nondenaturing polyacrylamide gradient gel electrophoresis (2D-GGE) with subsequent immunoblotting. fHDL are characterized by the highest proportion of esterified cholesterol of all three subfractions and are relatively enriched in LpA-I. Together with iHDL they contain the majority of plasma apoA-I, while sHDL contain the majority of plasma apoA-IV, apoD, apoE, and apoJ. Pre-beta-HDL were found in separate fractions together with triglyceride-rich fractions between sHDL and LDL. In summary, ITP can separate the bulk of HDL into lipoprotein subfractions, which differ in apolipoprotein composition and electrophoretic mobility. While analytical ITP permits rapid separation and quantitation for diagnostic purposes, FS-ITP can be used to obtain these lipoprotein subfractions on a preparative scale for functional analysis. As FS-ITP is much better suited for preparative purposes than gel electrophoresis, it represents an important novel tool for the functional analysis of lipoprotein subclasses.  相似文献   

12.
To reveal the metabolic links between and within pools of pro-atherogenic triglyceride(TG)-rich lipoproteins and anti-atherogenic high density lipoproteins (HDL), the changes in lipoprotein profile at hypertriglyceridemia were analyzed by capillary isotachophoresis. Plasma samples from patients with apoE3/3 phenotype were stained with a fluorescent probe NBD-C6-ceramide and lipoproteins resolved into six H-, one (V+I) and four L-components which belong to HDL, very low and intermediate density (VLDL+IDL) and low density lipoproteins (LDL), respectively. The expected correlation between the relative size of the combined fractions and lipid and apolipoprotein values was obtained confirming the validity of the approach. The new findings were obtained as follows. (1) The fast L-component correlated inversely with HDL-cholesterol (Chol), while intermediate and slow H-components correlated inversely with plasma and LDL-Chol and apoB. (2) The content of intermediate and slow H-components increased within H-pool and decreased relative TG-rich lipoproteins as hypertriglyceridemia rose due to the impairment of triglyceride hydrolysis by lipoprotein lipase within TG-rich particles. (3) A predictive value of the ratios of fast to slow H-components as an indicator of lecithin:cholesterol acyltransferase activity was demonstrated which tended to decrease at hypertriglyceridemia. (4) The L1/L2 ratio may be considered as an indicator of the accumulation of small dense LDL, which is a feature of clinically manifested atherogenic B-pattern. The competition between H(DL) and L(DL) particles for hepatic lipase and significant contribution of apoE to functional deficiency of H(DL) particles at hypertriglyceridemia are suggested.  相似文献   

13.
Studies have been performed to determine the proportion of the esterified cholesterol in high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) that is attributable to a direct action of lecithin: cholesterol acyltransferase on each lipoprotein fraction. Esterification of [3H]cholesterol was examined in 37 degrees C incubations of either: (a) unseparated whole plasma, (b) plasma reconstituted after prior ultracentrifugation to separate the 1.21 g/ml supernatant, (c) a mixture comprising the 1.21 g/ml supernatant of plasma and purified lecithin: cholesterol acyltransferase or (d) the same mixture as (c) after supplementation with a preparation of partially purified lipid transfer protein. Each of these incubations was performed using samples collected from four different subjects, two of whom had normal and two of whom had elevated concentrations of plasma triacylglycerol. At the completion of 3-h incubations, the lipoproteins were separated into multiple fractions by gel filtration to obtain a continuous profile of esterified [3H]cholesterol across the whole spectrum of lipoproteins. There was an appearance of esterified [3H]cholesterol in each of the major lipoprotein fractions in all incubations. In unseparated plasma, 56% of the total (mean of four experiments) was in HDL, 33% in LDL and 11% in VLDL. A comparable distribution was observed in the incubations of reconstituted plasma and in the samples to which partially purified lipid transfer protein had been added. In the absence of lipid transfer protein activity in incubations containing purified lecithin: cholesterol acyltransferase, 73% of the esterified [3H]cholesterol was in HDL, 25% in LDL and only 1% in VLDL. It has been concluded that at physiological concentrations of lipoproteins, 70-80% of the cholesterol esterifying action of lecithin: cholesterol acyltransferase is confined to the HDL fraction, with most of the remainder involving the LDL fraction. Of the newly formed esterified cholesterol incorporated into LDL during incubations of unseparated plasma, it was apparent that more than 70% was independent of activity of the lipid transfer protein. Of that incorporated into VLDL in unseparated plasma, in contrast, almost 90% was derived as a transfer from other fractions as a consequence of activity of the lipid transfer protein.  相似文献   

14.
The major lipoprotein density classes (chylomicrons-VLDL, LDL, HDL(2) and HDL(3)) were isolated from human plasma in a two-step ultracentrifugal procedure using the Ti-14 zonal rotor. The isolation of the two major high density lipoprotein subclasses (HDL(2) and HDL(3)) was achieved in a 24-hr run using a nonlinear NaBr gradient in the density range of 1.00-1.40. The lipoproteins with a density < 1.063 found in the rotor's center were isolated in a second run of 140 min duration using a continuous linear NaBr gradient in the density range of 1.00-1.30. The isolated lipoproteins were analyzed for chemical composition and for electrophoretic mobility; purity of isolated fractions was checked by immunochemistry. The lipoproteins exhibited flotation rates, chemical compositions, and molecular weights similar to those found with the common sequential procedures in angle-head rotors. The amount of lipoprotein lipids in the bottom fraction of the zonal rotor was comparable to that of the angle-head rotor. The described method yields the main lipoprotein density classes free from albumin in a very short running time; compared with the rate-zonal techniques already in use, this method allows the quantitative separation of an additional lipoprotein density class (HDL(2)) without increasing the running time. Furthermore, this procedure proved to be suitable for isolation of plasma lipoproteins from subjects with various types and varying degrees of hyperlipoproteinemia.  相似文献   

15.
16.
Procedures for the separation of plasma lipoprotein classes and subclasses by zonal ultracentrifugation are described. The main density classes, very low density lipoproteins (VLDL), low density lipoproteins (LDL) and high density lipoproteins (HDL), in plasma can be separated in a single run for 20 hours. For the isolation of VLDL-LDL a centrifugation time of only 90 minutes is needed. Separations can be performed on plasma volumes varying from 10 to 400 ml in the Ti-14 rotor used; VLDL can in this way be isolated from 400 ml plasma in 30 minutes. The advantages and disadvantages of zonal ultracentrifugation in comparison with the commonly employed differential ultracentrifugation for separation of lipoproteins are discussed.  相似文献   

17.
Determination of the circulating levels of plasma lipoproteins HDL, LDL, and VLDL is critical in the assessment of risk of coronary heart disease. More recently it has become apparent that the LDL subclass pattern is a further important diagnostic parameter. The reference method for separation of plasma lipoproteins is ultracentrifugation. However, current methods often involve prolonged centrifugation steps and use high salt concentrations, which can modify the lipoprotein structure and must be removed before further analysis. To overcome these problems we have now investigated the use of rapid self-generating gradients of iodixanol for separation and analysis of plasma lipoproteins. A protocol is presented in which HDL, LDL, and VLDL, characterized by electron microscopy and agarose gel electophoresis, separate in three bands in a 2.5 h centrifugation step. Recoveries of cholesterol and TG from the gradients were close to 100%. The distribution profiles of cholesterol and TG in the gradient were used to calculate the concentrations of individual lipoprotein classes. The values correlated with those obtained using commercial kits for HDL and LDL cholesterol. The position of the LDL peak in the gradient and its shape varied between plasma samples and was indicative of the density of the predominant LDL class. The novel protocol offers a rapid, reproducible and accurate single-step centrifugation method for the determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of LDL subclass pattern.  相似文献   

18.
Density gradient ultracentrifugation was used to isolate and characterize the plasma lipoproteins from African green monkeys before and 24 and 48 h after subcutaneous injection of 300 micrograms/kg lipopolysaccharide (LPS) to induce an acute phase response. Compared with 0 h values, reductions occurred in plasma cholesterol (39%), high density lipoprotein (HDL) cholesterol (54%), lecithin:cholesterol acyltransferase (LCAT) activity (55%), and post-heparin plasma lipase activity (68%) 48 h after LPS injection while plasma triglyceride concentrations increased 700%. Cholesterol distribution among lipoproteins shifted from 7 to 41% in very low density lipoproteins (VLDL), 65 to 38% in low density lipoproteins (LDL), and 28 to 21% in HDL after LPS injection. At 48 h after LPS injection, all lipoprotein classes were relatively enriched in phospholipid and triglyceride and depleted of cholesteryl ester. The plasma concentration of all chemical constituents in VLDL was increased 3-9-fold within 48 h after LPS injection. By negative stain electron microscopy, HDL were discoidal in shape while VLDL and LDL appeared to have excess surface material present. Even though total HDL protein concentration in plasma was unaffected, the plasma mass of the smallest HDL subfractions (HDL3b,c) doubled while the mass of intermediate-sized subfractions (HDL3a) was dramatically decreased within 24 h after treatment. HDL became enriched in apoE, acquired apoSAA, and became depleted of apoA-I, A-II, and Cs by 48 h after LPS injection while apoB-100 remained the major apoprotein of VLDL and LDL. We conclude that administration of LPS to monkeys prevents normal intravascular metabolism of lipoproteins and results in the accumulation of relatively nascent forms of lipoproteins in plasma. These immature lipoproteins resemble those isolated from the recirculating perfusion of African green monkey livers, which are relatively deficient of LCAT activity and those isolated from the plasma of patients with familial LCAT deficiency.  相似文献   

19.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

20.
A large number of studies indicate that oxidative modification of plasma lipoproteins, especially low-density lipoprotein (LDL), is a critical factor in initiation and progression of atherosclerosis. We have previously found that ibuprofen (IBP), a potential antioxidant drug to inhibit LDL oxidation, interacted with lipoproteins in intact human plasma. In the present study, we compare the binding affinities of IBP to LDL and HDL (high-density lipoprotein) by (1)H NMR spectroscopy. When IBP is added into the HDL and LDL samples, the - N(+)(CH(3))(3) moieties of phosphatidylcholine (PC) and sphingomyelin (SM) in lipoprotein particles experience the chemical shift up-field drift. Intermolecular cross-peaks observed in NOESY spectra imply that there are direct interactions between ibuprofen and lipoproteins at both hydrophobic and hydrophilic (ionic) regions. These interactions are likely to be important in the solubility of ibuprofen into lipoprotein particles. Ibuprofen has higher impact on the PC and SM head group ( - N(+)(CH(3))(3)) and - (CH(2))(n) - group in HDL than that in LDL. This could be explained by either IBP has higher binding affinity to HDL than to LDL, or IBP induces orientation of the phospholipid head group at the surface of the lipoprotein particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号