首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldehyde oxidases are molybdo-flavoenzymes structurally related to xanthine oxidoreductase. They catalyze the oxidation of aldehydes or N-heterocycles of physiological, pharmacological, and toxicological relevance. Rodents are characterized by four aldehyde oxidases as follows: AOX1 and aldehyde oxidase homologs 1-3 (AOH1, AOH2, and AOH3). Humans synthesize a single functional aldehyde oxidase, AOX1. Here we define the structure and the characteristics of the aldehyde oxidase genes and proteins in chicken and dog. The avian genome contains two aldehyde oxidase genes, AOX1 and AOH, mapping to chromosome 7. AOX1 and AOH are structurally very similar and code for proteins whose sequence was deduced from the corresponding cDNAs. AOX1 is the ortholog of the same gene in mammals, whereas AOH represents the likely ancestor of rodent AOH1, AOH2, and AOH3. The dog genome is endowed with two structurally conserved and active aldehyde oxidases clustering on chromosome 37. Cloning of the corresponding cDNAs and tissue distribution studies demonstrate that they are the orthologs of rodent AOH2 and AOH3. The vestiges of dog AOX1 and AOH1 are recognizable upstream of AOH2 and AOH3 on the same chromosome. Comparison of the complement and the structure of the aldehyde oxidase and xanthine oxidoreductase genes in vertebrates and other animal species indicates that they evolved through a series of duplication and inactivation events. Purification of the chicken AOX1 protein to homogeneity from kidney demonstrates that the enzyme possesses retinaldehyde oxidase activity. Unlike humans and most other mammals, dog and chicken are devoid of liver aldehyde oxidase activity.  相似文献   

2.
We report the cloning of the AOH1 and AOH2 genes, which encode two novel mammalian molybdo-flavoproteins. We have purified the AOH1 protein to homogeneity in its catalytically active form from mouse liver. Twenty tryptic peptides, identified or directly sequenced by mass spectrometry, confirm the primary structure of the polypeptide deduced from the AOH1 gene. The enzyme contains one molecule of FAD, one atom of molybdenum, and four atoms of iron per subunit and shows spectroscopic features similar to those of the prototypic molybdo-flavoprotein xanthine oxidoreductase. The AOH1 and AOH2 genes are 98 and 60 kilobases long, respectively, and consist of 35 coding exons. The AOH1 gene has the potential to transcribe an extra leader non-coding exon, which is located downstream of exon 26, and is transcribed in the opposite orientation relative to all the other exons. AOH1 and AOH2 map to chromosome 1 in close proximity to each other and to the aldehyde oxidase gene, forming a molybdo-flavoenzyme gene cluster. Conservation in the position of exon/intron junctions among the mouse AOH1, AOH2, aldehyde oxidase, and xanthine oxidoreductase loci indicates that these genes are derived from the duplication of an ancestral precursor.  相似文献   

3.
4.
5.
Defective xanthine dehydrogenase (XDH) activity in humans results in xanthinuria and xanthine calculus accumulation in kidneys. Bovine xanthinuria was demonstrated in a local herd and characterized as xanthinuria type II, similar to the Drosophila ma-l mutations, which lose activities of molybdoenzymes, XDH, and aldehyde oxidase, although sulfite oxidase activity is preserved. Linkage analysis located the disease locus at the centromeric region of bovine chromosome 24, where a ma-l homologous, putative molybdopterin cofactor sulfurase gene (MCSU) has been physically mapped. We found that a deletion mutation at tyrosine 257 in MCSU is tightly associated with bovine xanthinuria type II.  相似文献   

6.
Xanthine oxidoreductase (xanthine dehydrogenase + xanthine oxidase) is a complex enzyme that catalyzes the oxidation of hypoxanthine to xanthine, subsequently producing uric acid. The enzyme complex exists in separate but interconvertible forms, xanthine dehydrogenase and xanthine oxidase, which generate reactive oxygen species (ROS), a well known causative factor in ischemia/reperfusion injury and also in some other pathological states and diseases. Because the enzymes had not been localized in human corneas until now, the aim of this study was to detect xanthine oxidoreductase and xanthine oxidase in the corneas of normal post-mortem human eyes using histochemical and immunohistochemical methods. Xanthine oxidoreductase activity was demonstrated by the tetrazolium salt reduction method and xanthine oxidase activity was detected by methods based on cerium ion capture of hydrogen peroxide. For immunohistochemical studies. we used rabbit antibovine xanthine oxidase antibody, rabbit antihuman xanthine oxidase antibody and monoclonal mouse antihuman xanthine oxidase/xanthine dehydrogenase/aldehyde oxidase antibody. The results show that the enzymes are present in the corneal epithelium and endothelium. The activity of xanthine oxidoreductase is higher than that of xanthine oxidase, as clearly seen in the epithelium. Further studies are necessary to elucidate the role of these enzymes in the diseased human cornea. Based on the findings obtained in this study (xanthine oxidoreductase/xanthine oxidase activities are present in normal human corneas), we hypothesize that during various pathological states, xanthine oxidase-generated ROS might be involved in oxidative eye injury.  相似文献   

7.
8.
9.
Comparative mapping in man and mouse has revealed frequent conservation of chromosomal segments, offering a potential approach to human disease genes via their murine homologs. Using DNA markers near the Huntington disease gene on the short arm of chromosome 4, we defined a conserved linkage group on mouse chromosome 5. Linkage analyses using recombinant inbred strains, a standard outcross, and an interspecific backcross were used to assign homologs for five human loci, D4S43, D4S62, QDPR, D4S76, and D4S80, to chromosome 5 and to determine their relationships with previously mapped markers for this autosome. The relative order of the conserved loci was preserved in a linkage group that spanned 13% recombination in the interspecific backcross analysis. The most proximal of the conserved markers on the mouse map, D4S43h, showed no recombination with Emv-1, an endogenous ecotropic virus, in 84 outcross progeny and 19 recombinant inbred strains. Hx, a dominant mutation that causes deformities in limb development, maps approximately 2 cM proximal to Emv-1. Since the human D4S43 locus is less than 1 cM proximal to HD near the telomere of chromosome 4, the murine counterpart of the HD gene might lie between Hx and Emv-1 or D4S43h. Cloning of the region between these markers could generate new probes for conserved human sequences in the vicinity of the HD gene or possibly candidates for the murine counterpart of this human disease locus.  相似文献   

10.
11.
12.
13.
We have extended our pulsed-field gel map of the region of the mouse X chromosome homologous to human Xq28 to include the loci Gdx (DXS254Eh), P3 (DXS253Eh), G6pd, Cf-8, and F8a. Gdx, P3, and G6pd are demonstrated to be physically linked to the X-linked visual pigment locus (Rsvp) within a maximal distance of 340 kb, while G6pd and Cf-8 are approximately 900 kb apart. These studies favor a gene order of cen-Rsvp-Gdx-P3-G6pd-(Cf-8)-tel and extend the physical map of this region to 5 million bp. In conjunction with previous physical mapping studies in both mouse and human, the results suggest conserved linkage for loci in this region of the mouse X chromosome and human Xq28. However, employing pulsed-field gel electrophoresis and genetic pedigree analysis of interspecific backcross progeny, we have found close linkage of a clone encoding a mouse homolog for human factor VIII-associated gene A (F8A) to DXPas8, thus revealing the first exception to conserved gene order between murine and human loci in the region.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Autosomal dominant polycystic kidney disease (PKD1) is linked to the alpha-globin locus near the telomere of chromosome 16p. We established the existence of a conserved linkage group in mouse by mapping conserved sequences and cDNAs from the region surrounding the PKD1 gene in the mouse genome. Results obtained with the BXD recombinant strain system and somatic cell hybrids show the homologous region to be located on mouse chromosome 17 near the globin pseudogene Hba-ps4, an unprocessed alpha-like globin gene. The markers we mapped are widely distributed over the region known to contain the PKD1 gene, and it is therefore likely that the mouse homologue of PKD1 is also located on mouse chromosome 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号