首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infectious diseases are responsible for a significant number of deaths during the first weeks of life. Some of the salient pathogens include HSV, HIV, hepatitis B virus, group B streptococcus, Haemophilus sp., and Chlamydia sp. The vertical transmission of many of these pathogens significantly increases the risk of neonatal infection. We recently reported that oral DNA immunization in utero induced high serum Ab titers and cell-mediated immunity in fetal lambs. In this study, we demonstrate immune memory and mucosal immunity in newborn lambs following oral DNA immunization of the fetus. A single oral exposure in utero to plasmid DNA encoding a truncated form of glycoprotein D of bovine herpesvirus-1 induced detectable immune responses in 80% (12 of 15) of newborn lambs. There was no evidence for the induction of immune tolerance in nonresponding lambs. Responding lambs displayed both systemic and mucosal immune responses and reduced virus shedding following intranasal challenge. Furthermore, strong anamnestic responses were evident for at least 3 mo after birth. The efficacy of in utero oral DNA immunization was further demonstrated with the hepatitis B surface Ag, and protective serum Ab titers occurred in 75% of immunized lambs. Thus, the present investigation confirms that oral DNA immunization in utero can induce both mucosal and systemic immune responses in the neonate and that this immunity has the potential to prevent vertical disease transmission.  相似文献   

2.
Data obtained in animals indicate that neonatal immune responses are biased toward Th2. This could reduce the efficacy of vaccines against viral and mycobacterial diseases. The ability of human newborns to develop a Th1 immune response upon immunization has not been studied. Since the vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers a Th1-type response in adults, we investigated whether it induces a similar response in newborns and whether age at vaccination influences immunogenicity. We found that BCG vaccination at birth induces a memory Th1-type response of similar magnitude to that when given later in life. This study demonstrates that human newborns can be immunized against pathogens controlled by a Th1 immune response.  相似文献   

3.
Paramyxoviruses such as human parainfluenza viruses that bear inserts encoding protective antigens of heterologous viruses can induce an effective immunity against the heterologous viruses in experimental animals. However, vectors based on common human pathogens would be expected to be restricted in replication in the adult human population due to high seroprevalence, an effect that would reduce vector immunogenicity. To address this issue, we evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is serotypically distinct from common human pathogens, as a vaccine vector. Two strains were evaluated: the attenuated vaccine strain LaSota (NDV-LS) that replicates mostly in the chicken respiratory tract and the Beaudette C (NDV-BC) strain of intermediate virulence that produces mild systemic infection in chickens. A recombinant version of each virus was modified by the insertion, between the P and M genes, of a gene cassette encoding the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN) protein, a test antigen with considerable historic data. The recombinant viruses were administered to African green monkeys (NDV-BC and NDV-LS) and rhesus monkeys (NDV-BC only) by combined intranasal and intratracheal routes at a dose of 10(6.5) PFU per site, with a second equivalent dose administered 28 days later. Little or no virus shedding was detected in nose-throat swabs or tracheal lavages following immunization with either strain. In a separate experiment, direct examination of lung tissue confirmed a highly attenuated, restricted pattern of replication by parental NDV-BC. The serum antibody response to the foreign HN protein induced by the first immunization with either NDV vector was somewhat less than that observed following a wild-type HPIV3 infection; however, the titer following the second dose exceeded that observed with HPIV3 infection, even though HPIV3 replicates much more efficiently than NDV in these animals. NDV appears to be a promising vector for the development of vaccines for humans; one application would be in controlling localized outbreaks of emerging pathogens.  相似文献   

4.
Simian-human immunodeficiency viruses (SHIV) allow the evaluation of antiviral strategies that target the envelope glycoproteins of the human immunodeficiency virus 1 (HIV-1) in macaques. We previously protected neonates from oral challenge with cell-free SHIV-vpu+ by passive immunization with synergistic human neutralizing monoclonal antibodies (mAbs) (Baba et al., Nat Med 6:200-206, 2000). mAbs were administered prenatally to pregnant dams and postnatally to the neonates. Here, we used solely postnatal or postexposure mAb treatment, thus significantly reducing the amount of mAbs necessary. All neonatal monkeys were also protected with these abbreviated mAb regimens. Our results are directly relevant for humans because we used mAbs that target HIV-1 envelope glycoproteins. Thus, the large-scale use of passive immunization with neutralizing mAbs may be feasible in human neonates. The mAbs, being natural human proteins, can be expected to have low toxicity. Passive immunization has promise to prevent intrapartum as well as milk-borne virus transmission from HIV-1-infected women to their infants.  相似文献   

5.
Efficient immunization against hepatitis B virus (HBV) and other pathogens with plant-based oral vaccines requires appropriate plant expressors and the optimization of vaccine compositions and administration protocols. Previous immunization studies were mainly based on a combination of the injection of a small surface antigen of HBV (S-HBsAg) and the feeding with raw tissue containing the antigen, supplemented with an adjuvant, and coming from plants conferring resistance to kanamycin. The objective of this study was to develop a prototype oral vaccine formula suitable for human immunization. Herbicide-resistant lettuce was engineered, stably expressing through progeny generation micrograms of S-HBsAg per g of fresh weight and formed into virus-like particles (VLPs). Lyophilized tissue containing a relatively low, 100-ng VLP-assembled antigen dose, administered only orally to mice with a long, 60-day interval between prime and boost immunizations and without exogenous adjuvant, elicited mucosal and systemic humoral anti-HBs responses at the nominally protective level. Lyophilized tissue was converted into tablets, which preserved S-HBsAg content for at least one year of room temperature storage. The results of the study provide indications on immunization methodology using a durable, efficacious, and convenient plant-derived prototype oral vaccine against hepatitis B.  相似文献   

6.
Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth’s effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents.  相似文献   

7.
Esophageal carcinoma, with a increasing incidence, is one of the most aggressive carcinomas in gastrointestinal tract. Epidemiologic studies demonstrate an association of oral pathogens with multiple diseases, including rheumatoid arthritis, cardiovascular diseases, diabetes, and gastrointestinal malignancies. Nevertheless, a causal relationship between oral pathogens and esophageal squamous cell carcinoma (ESCC) has not been elucidated. Here, we found that Porphyromonas was significantly enriched in the saliva of patients with ESCC, compared with that in normal human. In vitro studies showed that Porphyromonas gingivalis (P. gingivalis) promoted the proliferation and motility of ESCC cells, as evidenced by up regulated expression of key molecules implicated in NF-κB signaling pathway. These findings, for the first time, demonstrated a role of oral pathogens in inducing ESCC tumorigenesis and metastasis, which might involve regulation of NF-κB signaling pathway.  相似文献   

8.
Among the three types of viral hepatitis agents—A, B and non-A, non-B—the hepatitis B virus (HBV) has been best characterized by immunologic and recombinant DNA technologies. The indefinite persistence of hepatitis B virus infection in 85% to 90% of perinatally infected infants and in about 10% of those infected later in life accounts for a worldwide epidemiologic reservoir of more than 200 million carriers who are at a high risk for the development of δ-infection, chronic liver disease and hepatocellular carcinoma. Active immunization with a safe and effective vaccine, derived from the plasma of carriers of hepatitis B surface antigen (HBsAg), is envisaged to avoid viral hepatitis type B and its chronic sequelae. In addition to serologic and immunohistochemical markers of hepatitis B virus infection, hybridization assays using cloned HBV DNA have provided new insight into the biology of this virus, its persistence and its oncogenic potential in humans and in animal models. Genetic similarities have been recognized between HBV and the antigenically distinct non-A, non-B agents implicated in some cases of transfusion-associated chronic hepatitis. Structurally this unique group of HBV and HBV-like agents are DNA viruses with functional attributes of integration and replication analogous to the retroviruses.  相似文献   

9.
Fetal immunization of baboons induces a fetal-specific antibody response   总被引:3,自引:0,他引:3  
Neonates face a high risk of infection because of the immaturity of their immune systems. Although the transplacental transfer of maternal antibodies to the fetus may convey improved postnatal immunity, this transfer occurs late in gestation and may fail to prevent in utero infection. Both fetal immunization and in utero exposure to antigen can result in a state of immunologic tolerance in the neonate. Tolerance induction of fetal and premature infant lymphocytes has become a paradigm for neonatal responsiveness. However, fetal IgM responses have been demonstrated to maternal immunization with tetanus toxoid and to congenital infections such as rubella, toxoplasma, cytomegalovirus and human immunodeficiency virus. Moreover, 1-week-old infants can respond to standard pediatric vaccination, and neonates immunized with polysaccharide antigens do not develop immunologic tolerance. Here, direct immunization of the baboon fetus with recombinant hepatitis B surface antigen produced a specific fetal IgG antibody response. No specific maternal antibody response was detected, eliminating the possibility of vertical antibody transmission to the fetus. Some infants also responded to later vaccinations with hepatitis B surface antigen, indicating that no immunological tolerance was induced by prior fetal immunization. These results characterize the ability of the fetal immune system to respond to in utero vaccination. We demonstrate that active fetal immunization can serve as a safe and efficient vaccination strategy for the fetus and neonate.  相似文献   

10.
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.  相似文献   

11.
Almost all infectious diseases are initiated at mucosal surfaces, yet intramuscular or subcutaneous vaccination usually provides only minimal protection at sites of infection owing to suboptimal activation of the mucosal immune system. The neonatal Fc receptor (FcRn) mediates the transport of IgG across polarized epithelial cells lining mucosal surfaces. We mimicked this process by fusing a model antigen, herpes simplex virus type-2 (HSV-2) glycoprotein gD, to an IgG Fc fragment. Intranasal immunization, together with the adjuvant CpG, completely protected wild-type, but not FcRn knockout, mice after intravaginal challenge with virulent HSV-2 186. This immunization strategy induced efficient mucosal and systemic antibody, B- and T-cell immune responses, with stable protection for at least 6 months after vaccination in most of the immunized animals. The FcRn-IgG transcellular transport pathway may provide a general delivery route for subunit vaccines against many mucosal pathogens.  相似文献   

12.
The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.  相似文献   

13.
The role of passively acquired immunity to reovirus-induced meningoencephalitis in neonatal mice was examined. It was determined that female mice were capable of conferring protection against viral infection and meningoencephalitis in neonates depending on the route by which the dams were immunized and the serotype of the immunizing virus. Female mice immunized with homotypic virus via the oral route developed the most potent response. Infected neonates born and nursed by these females developed no signs of disease, and no virus was recoverable from their small intestines, livers, or brains following infection. Neonates born to females immunized with homotypic virus by the subcutaneous route manifested no evidence of meningoencephalitis or virus dissemination, yet virus was recovered from neonatal intestines. Mice immunized with heterotypic virus by either the subcutaneous or the oral route also conferred protection against disease; however, virus was recovered in small intestines and livers of infected neonates. Based on results from foster-nursing experiments, it appears that factors obtained both during suckling and by transplacental transfer contribute to protection. Passive transfer of reovirus-immune mouse serum also protected neonates from disease. These results demonstrate that passive immune mechanisms can mediate the protection of neonates against reovirus infection and provide further evidence of the importance of the mucosal immune response in protection against pathogens that invade the host via mucosal tissues.  相似文献   

14.
Successful oral immunization to prevent infectious diseases in the gastrointestinal tract as well as distant mucosal tissues may depend on the effectiveness of an Ag to induce gut immune responses. We and others have previously reported that cholera toxin possesses strong adjuvant effects on the gut immune response to co-administered Ag. To explore further adjuvant effects of cholera toxin, the holotoxin or its B subunit was chemically cross-linked to Sendai virus. The resulting conjugates, which were not infectious, were evaluated for their capacity to induce gut immune responses against Sendai virus after oral administration to mice. Conjugating cholera toxin to virus significantly enhanced the adjuvant activity of cholera toxin compared to simple mixing. Cholera toxin B subunit, however, did not show an adjuvant effect either by itself or conjugated with the virus. Oral administration of the Sendai virus-cholera toxin conjugate was also able to prime for protective anti-viral responses in the respiratory tract. Mice that were orally immunized with the conjugate and intra-nasally boosted with inactivated virus alone showed virus-specific IgA titers in nasal secretions that correlated with protection against direct nasal challenge with live Sendai virus. For comparison, s.c. immunization was also studied. Systemic immunization with the virus-cholera toxin conjugate induced virus-specific antibody responses in serum as well as in the respiratory tract but failed to protect the upper respiratory tract against virus challenge. Systemic immunization plus an intra-nasal boost did, however, confer a variable degree of protection to the upper respiratory tract, which correlated primarily with bronchoalveolar lavage (lung) antibody titers.  相似文献   

15.
The presence of both cell-mediated and humoral immunity is important in protection from and clearance of a number of infectious pathogens. We describe novel vaccine regimens using combinations of plasmid DNA, poxvirus and protein to induce strong Ag-specific T cell and Ab responses simultaneously in a murine model. Intramuscular (i.m.) immunization with plasmid DNA encoding the middle Ag of hepatitis B (DNA) concurrently with a commercial hepatitis B virus (HBV) vaccine (Engerix-B) followed by boosting immunizations with both modified vaccinia virus Ankara (MVA) encoding the middle Ag of HBV and Engerix-B induced high levels of CD4(+) and CD8(+) T cells and high titer Ab responses to hepatitis B surface Ag (HbsAg). Substitution of Engerix-B with adjuvant-free rHBsAg induced similar T cell responses and greatly enhanced Ab levels. Repeated immunizations with recombinant or nonrecombinant MVA mixed with Ag induced higher titers of Abs compared with immunization with either Ag or Engerix-B further demonstrating this novel adjuvant effect of MVA. The poxviruses NYVAC, fowlpox (FP9) and ALVAC, and to a lesser extent, adenovirus, also displayed similar adjuvant properties when used in combination with rHBsAg. The use of poxviruses as an adjuvant for protein to concurrently induce Ag-specific T cells and Abs could be applied to the development of vaccines for many diseases, including HIV and malaria, where both cell mediated and humoral immunity may be important for protection.  相似文献   

16.
Infants younger than age 9 mo do not respond reliably to the live attenuated measles vaccine due the immaturity of their immune system and the presence of maternal Abs that interfere with successful immunization. We evaluated the immune responses elicited by Sindbis virus replicon-based DNA vaccines encoding measles virus (MV) hemagglutinin (H, pMSIN-H) or both hemagglutinin and fusion (F, pMSINH-FdU) glycoproteins in neonatal mice born to naive and measles-immune mothers. Despite the presence of high levels of maternal Abs, neonatal immunization with pMSIN-H induced long-lasting, high-avidity MV plaque reduction neutralization (PRN) Abs, mainly IgG2a, that also inhibited syncytium formation in CD150(+) B95-8 cells. IgG secreting plasma cells were detected in spleen and bone marrow. Newborns vaccinated with pMSINH-FdU elicited PRN titers that surpassed the protective level (200 mIU/ml) but were short-lived, had low syncytium inhibition capacity, and lacked avidity maturation. This vaccine failed to induce significant PRN titers in the presence of placentally transferred Abs. Both pMSIN-H and pMSINH-FdU elicited strong Th1 type cell-mediated immunity, measured by T cell proliferation and IFN-gamma production, that was unaffected by maternal Abs. Newborns responded to measles DNA vaccines with similar or even higher PRN titers and cell-mediated immunity than adult mice. This study is the first demonstration that a Sindbis virus-based measles DNA vaccine can elicit robust MV immunity in neonates bypassing maternal Abs. Such a vaccine could be followed by the current live attenuated MV vaccine in a heterologous prime-boost to protect against measles early in life.  相似文献   

17.
Surges of serum Abs after immunization and infection are highly specific for the offending Ag, and recent studies demonstrate that vaccines induce transient increases in circulating Ab-secreting cells (ASCs). These ASCs are highly enriched but not universally specific for the immunizing Ag, suggesting that a fraction of these ASCs could arise from polyclonal bystander stimulation of preexisting memory cells to unrelated Ags. This model is proposed to explain maintenance of long-lived serological memory in the absence of Ag exposure. To test this model, we measure the ability of respiratory syncytial virus and influenza virus infection or immunizations to influenza virus, tetanus toxoid, hepatitis B Ag, and human papillomavirus to stimulate bystander memory cells specific for other major environmental Ags that represent a large fraction of the preexisting memory B compartment. Bystander or nonspecific ASC responses to respiratory syncytial virus and tetanus could not be detected above the background levels in healthy adults, despite the presence of circulating memory B cells specific for the corresponding Ags. Nonspecific ASC responses in the healthy subjects and cord blood samples were similar. In contrast, both vaccination and infection induce massive expansion of circulating Ag-specific ASCs without significant increases in the frequencies of ASCs against unrelated Ags. Hence, nonspecific stimulation of memory B cells is unlikely to contribute to the mechanisms of long-term serological memory against major human pathogens. Additionally, high specificity of circulating ASCs after antigenic challenge highlights the diagnostic value of interrogating ASCs as an ideal single-time-point diagnostic immune surrogate for serology during acute infection.  相似文献   

18.
BACKGROUND: We previously reported successful therapeutic immunization in a chimpanzee having a relatively low viral load, which was immunized with recombinant plasmid hepatitis B surface antigen (HBsAg) DNA and boosted with recombinant HBsAg encoding canarypox virus. In the present study, we attempted to confirm these findings in an animal with a high virus load. METHODS AND RESULTS: We tested three immunization strategies successively over a 3-year period. In the first of these, we administered four monthly injections of DNA encoding HBsAg + PreS2 + hepatitis B core antigen (HBcAg) + DNA encoding interleukin (IL)-12, (given 3 days later), and boosted with canarypox expressing all of the above HBV genes 6 months after initial immunization. No reduction in viral load was observed. In the second trial, we administered lamivudine for 8 weeks, and then began monthly DNA-based immunization with plasmids expressing the above viral genes; however, viral loads rebounded 1 week after termination of lamivudine therapy. In a third trial, we continued lamivudine therapy for 30 weeks and immunized with vaccinia virus expressing the above viral genes 18 and 23 weeks after the start of lamivudine therapy. Again viral loads rebounded shortly after cessation of lamivudine treatment. Analysis of cell-mediated immune responses, and their avidity, revealed that DNA-based immunization produced the strongest enhancement of high avidity T-cell responses, while recombinant vaccinia immunization during lamivudine therapy enhanced low avidity responses only. The strongest low and high avidity responses were directed to the middle surface antigen. CONCLUSIONS: Three strategies for therapeutic immunization failed to control HBV viremia in a chronically infected chimpanzee with a high viral load.  相似文献   

19.
Purified reovirus serotype 1, encapsulated in biodegradable aqueous microcapsules, was found to bypass maternal antibody passively transferred by suckling to neonates. Genetically identical, immunocompetent F1 scid/+ mice were generated by the reciprocal crosses of C.B17 scid/scid and normal congenic +/+ adult mice. The immunocompetent +/+ dams were either orally infected with reovirus prior to mating or not. Thus, these immunocompetent F1 pups developed either in the absence or in presence of passively transferred maternal immunity. The F1 mice were orally immunized on day 10 with either live virus, microencapsulated reovirus, or empty microcapsules plus live virus. The immune responses were assessed in the neonatal gut-associated lymphoid tissues (GALT). Examination of reovirus specific immunoglobulin A in the serum and GALT, taken on days 7, 14, and 21 postimmunization, clearly demonstrated that microencapsulated reovirus could bypass the normal effect of maternal antibodies, passively acquired by suckling, to inhibit active priming of neonates by oral route. These observations seem relevant to the development of efficacious oral vaccines that also allow passive, protective immunity via suckled maternal antibodies while permitting active oral immunization of neonates.  相似文献   

20.

Background

Neonatal infections cause a significant proportion of deaths in the first week of life, yet little is known about risk factors and pathways of transmission for early-onset neonatal sepsis globally. We aimed to estimate the risk of neonatal infection (excluding sexually transmitted diseases [STDs] or congenital infections) in the first seven days of life among newborns of mothers with bacterial infection or colonization during the intrapartum period.

Methods and Findings

We searched PubMed, Embase, Scopus, Web of Science, Cochrane Library, and the World Health Organization Regional Databases for studies of maternal infection, vertical transmission, and neonatal infection published from January 1, 1960 to March 30, 2013. Studies were included that reported effect measures on the risk of neonatal infection among newborns exposed to maternal infection. Random effects meta-analyses were used to pool data and calculate the odds ratio estimates of risk of infection. Eighty-three studies met the inclusion criteria. Seven studies (8.4%) were from high neonatal mortality settings. Considerable heterogeneity existed between studies given the various definitions of laboratory-confirmed and clinical signs of infection, as well as for colonization and risk factors. The odds ratio for neonatal lab-confirmed infection among newborns of mothers with lab-confirmed infection was 6.6 (95% CI 3.9–11.2). Newborns of mothers with colonization had a 9.4 (95% CI 3.1–28.5) times higher odds of lab-confirmed infection than newborns of non-colonized mothers. Newborns of mothers with risk factors for infection (defined as prelabour rupture of membranes [PROM], preterm <37 weeks PROM, and prolonged ROM) had a 2.3 (95% CI 1.0–5.4) times higher odds of infection than newborns of mothers without risk factors.

Conclusions

Neonatal infection in the first week of life is associated with maternal infection and colonization. High-quality studies, particularly from settings with high neonatal mortality, are needed to determine whether targeting treatment of maternal infections or colonization, and/or prophylactic antibiotic treatment of newborns of high risk mothers, may prevent a significant proportion of early-onset neonatal sepsis. Please see later in the article for the Editors'' Summary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号