首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of approximately 3 microM for its dimer-tetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations.  相似文献   

10.
11.
12.
13.
14.
15.
The tumor suppressor protein, p53, selectively binds to supercoiled (sc) DNA lacking the specific p53 consensus binding sequence (p53CON). Using p53 deletion mutants, we have previously shown that the p53 C-terminal DNA-binding site (CTDBS) is critical for this binding. Here we studied supercoil-selective binding of bacterially expressed full-length p53 using modulation of activity of the p53 DNA-binding domains by oxidation of cysteine residues (to preclude binding within the p53 core domain) and/or by antibodies mapping to epitopes at the protein C-terminus (to block binding within the CTDBS). In the absence of antibody, reduced p53 preferentially bound scDNA lacking p53CON in the presence of 3 kb linear plasmid DNAs or 20 mer oligonucleotides, both containing and lacking the p53CON. Blocking the CTDBS with antibody caused reduced p53 to bind equally to sc and linear or relaxed circular DNA lacking p53CON, but with a high preference for the p53CON. The same immune complex of oxidized p53 failed to bind DNA, while oxidized p53 in the absence of antibody restored selective scDNA binding. Antibodies mapping outside the CTDBS did not prevent p53 supercoil-selective (SCS) binding. These data indicate that the CTDBS is primarily responsible for p53 SCS binding. In the absence of the SCS binding, p53 binds sc or linear (relaxed) DNA via the p53 core domain and exhibits strong sequence-specific binding. Our results support a hypothesis that alterations to DNA topology may be a component of the complex cellular regulatory mechanisms that control the switch between latent and active p53 following cellular stress.  相似文献   

16.
Gal S  Cook JR  Howells L 《BioTechniques》2006,41(3):303-308
Many DNA binding proteins are known to regulate gene expression. When that binding is altered, a disease state can result. A common method for measuring DNA binding, namely electrophoretic mobility shift assay (EMSA) is often used but it is not amenable to rapid screening of many samples. As an alternative method, we have developed a DNA binding assay for the tumor suppressor protein p53 in a 96-well microtiter plate format using scintillation proximity assay (SPA) beads. We have shown this assay to be sensitive (as little as 0.5 ng p53 can be detected), quick (assay completed in as little as 15 min), and easily quantitated using a microtiter plate scintillation counter We also used the assay to analyze the kinetics of the DNA binding to p53. The specificity of this p53 DNA binding SPA was confirmed using competition by oligonucleotides either from the same gene or from mutated versions of this sequence. Thus, SPA is a good alternative to gel shift assays for DNA binding and may be useful for the analysis of multiple tumor cell samples or for high-throughput screens for compounds affecting DNA binding by proteins of interest.  相似文献   

17.
The p53 family member p73 displays significant structural and functional homology to p53. However, instead of mutational inactivation, overexpression of wild-type p73 has been reported in various tumor types compared with normal tissues, arguing against a classical tumor suppressor function. Recently, N-terminally truncated, transactivation-deficient p73 isoforms (DeltaTA-p73) have been identified as a second class of p73 proteins. Because overexpression of p73 in tumors includes DeltaTA-p73, we further characterized these novel p73 isoforms. We show that DeltaTA-p73 retains DNA-binding competence but lacks transactivation functions, resulting in an inability to induce growth arrest and apoptosis. Importantly, DeltaTA-p73 acts as a dominant-negative inhibitor of p53 and full-length p73 (TA-p73). We demonstrate that inhibition of p53 involves competition for DNA binding, whereas TA-p73 can be inhibited by direct protein-protein interaction. Further, we show that up-regulation of endogenous p73 just like ectopic overexpression of DeltaTA-p73 confers resistance to p53-mediated apoptosis induced by the chemotherapeutic agent H-7. Because inhibition of p53 is a common theme in human cancer, our data strongly support a role of DeltaTA-p73 expression for tumor formation.  相似文献   

18.
19.
20.
The carboxyl terminus of p53 is a target of a variety of signals for regulation of p53 DNA binding. Growth suppressor c-Abl interacts with p53 in response to DNA damage and overexpression of c-Abl leads to G(1) growth arrest in a p53-dependent manner. Here, we show that c-Abl binds directly to the carboxyl-terminal regulatory domain of p53 and that this interaction requires tetramerization of p53. Importantly, we demonstrate that c-Abl stimulates the DNA-binding activity of wild-type p53 but not of a carboxyl-terminally truncated p53 (p53Delta363C). A deletion mutant of c-Abl that does not bind to p53 is also incapable of activating p53 DNA binding. These data suggest that the binding to the p53 carboxyl terminus is necessary for c-Abl stimulation. To investigate the mechanism for this activation, we have also shown that c-Abl stabilizes the p53-DNA complex. These results led us to hypothesize that the interaction of c-Abl with the C terminus of p53 may stabilize the p53 tetrameric conformation, resulting in a more stable p53-DNA complex. Interestingly, the stimulation of p53 DNA-binding by c-Abl does not require its tyrosine kinase activity, indicating a kinase-independent function for c-Abl. Together, these results suggest a detailed mechanism by which c-Abl activates p53 DNA-binding via the carboxyl-terminal regulatory domain and tetramerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号