首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

2.
黑皮质素系统来自阿片-促黑素细胞皮质素原,在中枢摄食行为和能量平衡代谢中起到重要作用,此系统生理功能的发挥主要通过与下丘脑神经元细胞上特定膜受体(黑皮质素受体)结合完成。黑皮质素受体(MCR)有五种亚型(MC1R-MC5R),其中参与体重调节的受体主要是黑皮质素受体3(MC3R)和黑皮质素受体4(MC4R)。MC4R属于G蛋白耦联受体,具有七次跨膜结构。作为一种膜受体,MC4R发挥体重调节作用,一方面受外界激动剂或拮抗剂的调节;另一方面,此受体活化后会影响到细胞内的信号调节通路。研究MC4R的功能首先要了解受体的结构,本文对G蛋白耦联受体的结构进行了较详细的叙述,MC4R经信号调节通路,激活腺苷酸环化酶,增加cAMP的浓度,最终通过影响细胞内基因的转录和翻译,来调节体重和能量的消耗。  相似文献   

3.
Lee M  Kim A  Conwell IM  Hruby V  Mayorov A  Cai M  Wardlaw SL 《Peptides》2008,29(3):440-447
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.  相似文献   

4.
Mutation of the melanocortin-receptor 4 (MC4R) is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP) to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.  相似文献   

5.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

6.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

7.
黑素皮质素受体对动物采食量和能量稳态的调控   总被引:7,自引:2,他引:5  
蒋思文  彭健  熊远著 《遗传》2002,24(2):223-226
黑素皮质素受体是G-蛋白耦联受体超家族成员。5个黑素皮质素受体基因已经被克隆和鉴定,并有不同的组织分布和生物学功能。本文综述了黑素皮质素受体3和受体4基因调控采食量和能量稳态的研究进展。 Abstract:The melanocortin receptors are members of the super-family of G-protein coupled receptors.To date,five melanocortin receptor genes (MC1R-MC5R) have been cloned and characterized.These receptorsdiffer in their tissue distributions and physiological roles.This review focuses on the roles of MC3R and MC4R in regulation of food intake and energy homeostasis.  相似文献   

8.
Todorovic A  Haskell-Luevano C 《Peptides》2005,26(10):2026-2036
The melanocortin system (MC) is implicated in the regulation of a variety of physiological pathways including pigmentation, steroid function, energy homeostasis, food intake, obesity, cardiovascular, sexual function, and normal gland regulation. The melanocortin system consists of five receptors identified to date (MC1-5R), melanocortin agonists derived from the pro-opiomelanocortin prohormone (POMC) and two naturally existing antagonists. Melanocortin receptor ligand structure-activity studies have been performed since the 1960s, primarily focused on the pigmentation aspect of physiology. During the 1990s, the melanocortin-4 receptor was identified to play a significant physiological role in the regulation of both food intake and obesity. Subsequently, a concerted drug design effort has focused on the design and discovery of melanocortin receptor small molecules. Herein, we present an overview of melanocortin receptor heterocyclic small molecules.  相似文献   

9.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

10.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

11.
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.  相似文献   

12.
The melanocortin 4 receptor is a member of melanocortin receptors of G-protein-coupled receptors. By binding to melanocortin receptor agonists or antagonists, MC4R participates in the regulating of food intake, weight, energy homeostasis and sexual behavior. By activating the protein kinase A and leptin-melanocortin signalling pathways, MC4R mediates the amplification of signals from the hypothalamo–pituitary–adrenal and hypothalamo–pituitary–thyroid axes. This process permits peripheral information about the status of energy metabolism to be transmitted to the central nervous system. The hypothalamic nuclei then integrate these signals to evoke the appropriate reaction. We found that different sexes exhibited distinct metabolic regulation abilities, likely due to differences in these signalling pathways. MC4R plays a key role in coordinating the afferent messages from the peripheral and regulatory signals by controlling food intake and energy expenditure. To probe the disparities in metabolism and weight regulation between the sexes, we analyzed the expression of MC4R in different tissues from male and female mice by qRT-PCR and immunofluorescence. The results show that the expression of MC4R in brain and kidney is higher in female mice than in male mice, but in the livers, the result is opposition. Additionally, in both sexes, the expression of MC4R is higher in the brain than in the kidneys, and its expression in the liver is lowest, in males, the expression of MC4R in the testis is higher than that in the kidneys. These data show that the expression of MC4R exist different between sexes mice.  相似文献   

13.
Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.  相似文献   

14.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) and TrkB receptor signaling contribute to the central nervous system (CNS) control of energy balance. The role of hindbrain BDNF/TrkB receptor signaling in energy balance regulation is examined here. Hindbrain ventricular BDNF suppressed body weight through reductions in overall food intake and meal size and by increasing core temperature. To localize the neurons mediating the energy balance effects of hindbrain ventricle-delivered BDNF, ventricle subthreshold doses were delivered directly to medial nucleus tractus solitarius (mNTS). mNTS BDNF administration reduced food intake significantly, and this effect was blocked by preadministration of a highly selective TrkB receptor antagonist {[N2-2-2-Oxoazepan-3-yl amino]carbonyl phenyl benzo (b)thiophene-2-carboxamide (ANA-12)}, suggesting that TrkB receptor activation mediates hindbrain BDNF's effect on food intake. Because both BDNF and leptin interact with melanocortin signaling to reduce food intake, we also examined whether the intake inhibitory effects of hindbrain leptin involve hindbrain-specific BDNF/TrkB activation. BDNF protein content within the dorsal vagal complex of the hindbrain was increased significantly by hindbrain leptin delivery. To assess if BDNF/TrkB receptor signaling acts downstream of leptin signaling in the control of energy balance, leptin and ANA-12 were coadministered into the mNTS. Administration of the TrkB receptor antagonist attenuated the intake-suppressive effects of leptin, suggesting that mNTS TrkB receptor activation contributes to the mediation of the anorexigenic effects of hindbrain leptin. Collectively, these results indicate that TrkB-mediated signaling in the mNTS negatively regulates food intake and, in part, the intake inhibitory effects of leptin administered into the NTS.  相似文献   

16.
Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.  相似文献   

17.
Lin L  Park M  York DA 《Peptides》2007,28(3):643-649
Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knock out mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 i.c.v. blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in alpha-melanocyte stimulating hormone (alpha-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway.  相似文献   

18.
The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.  相似文献   

19.
Pritchard LE  White A 《Peptides》2005,26(10):1759-1770
It is well established that agouti-related protein (AGRP) can act as a competitive antagonist to proopiomelanocortin (POMC)-derived peptides at the melanocortin-4 receptor (MC4R), and that this homeostatic mechanism is important as a means of coordinating appetite with perceived metabolic requirement. However, there are clearly additional facets to the physiological role of AGRP, given that it is active in MC4R knockout mice and it has strikingly long-lasting effects on food intake, compared with MC4R agonists. In this review we focus on: (i) evidence that AGRP is more sensitive to perturbations in energy balance than POMC and is therefore the primary basis of melanocortinergic regulation. (ii) Evidence that the bioactive peptide AGRP83-132, acts by alternate mechanism(s) to elicit its long-term effects on food intake. (iii) Evidence that AGRP is post-translationally cleaved to generate AGRP83-132 and one or more N terminal peptides, which may have an important physiological role(s) that are independent of the melanocortin system. A clear understanding of how proAGRP processing is regulated, and the role of resultant peptides, may define additional therapeutic targets in the treatment of obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号