首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng Z  Li D  Xue W  Sun L 《Biophysical chemistry》2007,131(1-3):88-95
A simple surface equation of state is proposed to describe pi-A isotherms of pulmonary surfactant monolayers. The monolayer is considered as undergoing three characteristic states during the compression: the disordered liquid-expanded (LE) state, the ordered liquid-condensed (LC) state and the collapse state. Structural models of pure protein (SP-B and SP-C) monolayer are proposed to interpret the behavior characteristics of monolayer in the states. The area, ALC, is defined as an instantaneous LC-state area when the monolayer is under the complete LC state. The area, At, is defined as a transition area from the ordered LC state to the collapse state. And the collapse pressure, pi(max), is defined as the maximum surface pressure that the monolayer can bear before collapse. The ideal equation of state is revised by ALC, At and pi(max), and a new equation of state is obtained, which is applicable for pure components of pulmonary surfactant. The theoretical pi-A isotherms described by the equation of state are compared with the experimental ones for SP-B, SP-C, DPPC and DPPG, and good agreements are obtained. The equation of state is generalized to protein-lipid binary mixtures by introducing mixing rules. The predicted pi-A isotherms agree with the experimental ones for various pulmonary surfactant components and the average deviation is about 9.2%.  相似文献   

2.
Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.  相似文献   

3.
A method for transferring a lipid monolayer from an air-water interface to an alkylated glass slide is described. Specific antibodies bind tightly to lipid haptens contained in these monolayers on the glass slides. We conclude that the polar head groups of the lipids face the aqueous phase. A monolayer containing a fluorescent lipid was used to show that the monolayer is homogeneous as observed with an epifluorescence microscope. A periodic pattern photobleaching technique was used to measure the lateral diffusion of this fluorescent lipid probe in monolayers composed of dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. Different regions of the pressure-area isotherms of the monolayers at the air-water interface can be correlated with the diffusion of the fluorescent probe molecules on the monolayer-coated glass slide. Monolayers derived from the so-called “solid-condensed” state of a monolayer at the air-water interface showed a very low probe diffusion coefficient in this monolayer when placed on a glass slide, D ≤ 10-10 cm2/s. Monolayers derived from the “liquid condensed/liquid expanded” (LC/LE) region of the monolayer isotherms at the air-water interface showed rapid diffusion (D > 10-8 cm2/s) when these same monolayers were observed on an alkylated glass slide. The monolayers attached to the glass slide appear to be homogeneous when derived from monolayers in the LC/LE region of monolayers at the air-water interface. There is no major variation of the diffusion coefficient of a fluorescent lipid probe when this diffusion is measured on a lipid monolayer on a glass slide, for monolayers derived from various regions of the LC/LE monolayers at the air-water interface. This is consistent with the view that the LC/LE region is most likely a single fluid phase. Monolayers supported on a planar glass substrate are of much potential interest for biophysical and biochemical studies of the interactions between model membranes and cellular membranes, and for physical chemical studies relating the properties of lipid monolayers to the properties of lipid bilayers.  相似文献   

4.
The temperature dependence of the force/area isotherms of monolayer of distearoyl phosphatidylcholine (DSPC), diisoeicosanoyl phosphatidylcholine (DIEPC) and a complete mixed compositional range of these two lecithins are reported. The isotherms for DSPC closely resemble those previously reported for dipalmitoyl phosphatidylcholine but are shifted to higher temperatures by 16 degrees C. The isotherms of DIEPC, an iso-branched lecithin, show differences from these obtained for similar straight-chain lecithins in that the full condensed isotherms are more expanded, the fully expanded isotherms are more condensed and therefore the liquid expanded (LE)/liquid condensed (LC) intermediate region is significantly reduced. This means that the condensed state is more disordered and the expanded state is less disordered than the corresponding states in straight-chain lecithins. Data for the mixed films are interpreted in terms of surface pressure/mole fraction phase diagrams and both energies and entropies of compression associated with the LE/LC transition. The phase diagrams at 34.1 degrees C, 35.8 degrees C and 38.5 degrees C are all of the negative azeotropic type with the surface pressure minimum point shifting with temperature. The thermodynamic analysis indicates that from 34.1 degrees C to 38.5 degrees C the driving force for mixing changes from the entropy to the energy of the transition. It would seem that at the lower temperature the packing of the distearoyl lecithin is perturbed by the diisoeicosanoyl lecithin, while at higher temperatures the very high entropy of pure or nearly pure diisoeicosanoyl lecithin results in other mixtures having less entropy than would be expected on an ideal mixing basis.  相似文献   

5.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

6.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

7.
The exact mechanism by which pulmonary surfactant films reach the very low surface tensions required to stabilize the alveoli at end expiration remains uncertain. We utilized the nanoscale sensitivity of atomic force microscopy (AFM) to examine phospholipid (PL) phase transition and multilayer formation for two Langmuir-Blodgett (LB) systems: a simple 3 PL surfactant-like mixture and the more complex bovine lipid extract surfactant (BLES). AFM height images demonstrated that both systems develop two types of liquid condensed (LC) domains (micro- and nano-sized) within a liquid expanded phase (LE). The 3 PL mixture failed to form significant multilayers at high surface pressure (π while BLES forms an extensive network of multilayer structures containing up to three bilayers. A close examination of the progression of multilayer formation reveals that multilayers start to form at the edge of the solid-like LC domains and also in the fluid-like LE phase. We used the elemental analysis capability of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to show that multilayer structures are enriched in unsaturated PLs while the saturated PLs are concentrated in the remaining interfacial monolayer. This supports a modified squeeze-out model where film compression results in the hydrophobic surfactant protein-dependent formation of unsaturated PL-rich multilayers which remain functionally associated with a monolayer enriched in disaturated PL species. This allows the surface film to attain low surface tensions during compression and maintain values near equilibrium during expansion.  相似文献   

8.
Monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol (DPPG) (7:3, w/w) in the absence or in the presence of 2, 5, 10, or 20 weight percent of porcine surfactant protein SP-B were spread at the air-liquid interface of a surface balance, compressed up to surface pressures in the liquid-expanded/liquid-condensed (LE-LC) plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy. In the absence of protein, the films showed micrometer-sized condensed domains with morphology and size that were analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. Scanning force microscopy permits examination of the coexisting phases at a higher resolution than previously achieved with fluorescent microscopy. Both LE and LC regions of DPPC films were heterogeneous in nature. LC microdomains contained numerous expanded-like islands whereas regions apparently liquid-expanded were covered by a condensed-like framework of interconnected nanodomains. Presence of increasing amounts of pulmonary surfactant protein SP-B affected the distribution of the LE and LC regions of DPPC and DPPC/DPPG films both at the microscopic and the nanoscopic level. The condensed microdomains became more numerous but their size decreased, resulting in an overall reduction of the amount of total LC phase in both DPPC and DPPC/DPPG films. At the nanoscopic level, SP-B also caused a marked reduction of the size of the condensed-like nanodomains in the LE phase and an increase in the length of the LE/LC interface. SP-B promotes a fine nanoscopic framework of lipid and lipid-protein nanodomains that is associated with a substantial mechanical resistance to film deformation and rupture as observed during film transference and manipulation. The effect of SP-B on the nanoscopic structure of the lipid films was greater in DPPC/DPPG than in pure DPPC films, indicating additional contributions of electrostatic lipid-protein interactions. The alterations of the nanoscopic structures of phospholipid films by SP-B provide the structural framework for the protein simultaneously sustaining structural stability as well as dynamical flexibility in surfactant films at the extreme conditions imposed by the respiratory mechanics. SP-B also formed segregated two-dimensional clusters that were associated with the boundaries between LC microdomains and the LE regions of DPPC and DPPC/DPPG films. The presence of these clusters at protein-to-lipid proportions above 2% by weight suggests that the concentration of SP-B in the surfactant lipid-protein complexes may be close to the solubility limit of the protein in the lipid films.  相似文献   

9.
Langmuir-Blodgett (LB) monolayers and bilayers of L-alpha-dipalmitoylphosphatidylcholine (DPPC), fluorescently doped with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diIC18), are studied by confocal microscopy, atomic force microscopy (AFM), and near-field scanning optical microscopy (NSOM). Beyond the resolution limit of confocal microscopy, both AFM and NSOM measurements of mica-supported lipid monolayers reveal small domains on the submicron scale. In the NSOM studies, simultaneous high-resolution fluorescence and topography measurements of these structures confirm that they arise from coexisting liquid condensed (LC) and liquid expanded (LE) lipid phases, and not defects in the monolayer. AFM studies of bilayers formed by a combination of LB dipping and Langmuir-Schaefer monolayer transfer exhibit complex surface topographies that reflect a convolution of the phase structure present in each of the individual monolayers. NSOM fluorescence measurements, however, are able to resolve the underlying lipid domains from each side of the bilayer and show that they are qualitatively similar to those observed in the monolayers. The observation of the small lipid domains in these bilayers is beyond the spatial resolving power of confocal microscopy and is complicated in the topography measurements taken with AFM, illustrating the utility of NSOM for these types of studies. The data suggest that the small LC and LE lipid domains are formed after lipid transfer to the substrate through a dewetting mechanism. The possible extension of these measurements to probing for lipid phase domains in natural biomembranes is discussed.  相似文献   

10.
This work reports the first x-ray scattering measurements to determine the effects of SP-B(1-25), the N-terminus peptide of lung surfactant-specific protein SP-B, on the structure of palmitic acid (PA) monolayers. In-plane diffraction shows that the peptide fluidizes a portion of the monolayer but does not affect the packing of the residual ordered phase. This implies that the peptide resides in the disordered phase, and that the ordered phase is essentially pure lipid, in agreement with fluorescence microscopy studies. X-ray reflectivity shows that the peptide is oriented in the lipid monolayer at an angle of approximately 56 degrees relative to the interface normal, with one end protruding past the hydrophilic region into the fluid subphase and the other end embedded in the hydrophobic region of the monolayer. The quantitative insights afforded by this study lead to a better understanding of the lipid/protein interactions found in lung surfactant systems.  相似文献   

11.
We describe the localization of Alexa-488-labeled SMase in SM/ceramide (Cer) lipid monolayers containing segregated liquid-condensed (LC) Cer-enriched domains surrounded by a continuous liquid-expanded (LE) SM-enriched phase. Langmuir-Schaefer films were made in order to visualize the labeled enzyme. Independently of initial conditions Alexa-SMase is preferably localized in the SM-enriched LE phase and it is not enriched at the domain boundaries. A novel mechanism is proposed for the action of SMase, which can also explain the regulatory effect of the surface topography on the enzyme activity. The homogeneous enzymatic generation of Cer in the LE phase leads to a meta-stable, kinetically trapped, supersaturated mixed monolayer. This effect acts as driving force for the segregation of the Cer-enriched domain following classical nucleation mechanisms. Accordingly, the number and size of Cer-enriched domains are determined by the extent of Cer supersaturation in the LE phase rather than by the SMase local activity. The kinetic barrier for nucleation, for which a compositional gap of at least 53 mol% of Cer is necessary to reach a thermodynamically stable LC phase, can explain the lag time to reaching full catalytic activity. Altogether, the data support an "area-activated mechanism," in which the enzyme is homogeneously active over the LE surface.  相似文献   

12.
The interaction of the pulmonary surfactant protein SP-A fluorescently labeled with Texas Red (TR-SP-A) with monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol 7:3 w/w has been investigated. The monolayers were spread on aqueous subphases containing TR-SP-A. TR-SP-A interacted with the monolayers of DPPC to accumulate at the boundary regions between liquid condensed (LC) and liquid expanded (LE) phases. Some TR-SP-A appeared in the LE phase but not in the LC phase. At intermediate surface pressures (10-20 mN/m), the protein caused the occurrence of more, smaller condensed domains, and it appeared to be excluded from the monolayers at surface pressure in the range of 30-40 mN/m. TR-SP-A interaction with DPPC/dipalmitoylphosphatidylglycerol monolayers was different. The protein did not appear in either LE or LC but only in large aggregates at the LC-LE boundary regions, a distribution visually similar to that of fluorescently labeled concanavalin A adsorbed onto monolayers of DPPC. The observations are consistent with a selectivity of interaction of SP-A with DPPC and for its accumulation in boundaries between LC and LE phase.  相似文献   

13.
A combination of lipid monolayer- and bilayer-based model systems has been applied to explore in detail the interactions between and organization of palmitoylsphingomyelin (pSM) and the related lipid palmitoylceramide (pCer). Langmuir balance measurements of the binary mixture reveal favorable interactions between the lipid molecules. A thermodynamically stable point is observed in the range ∼30-40 mol % pCer. The pSM monolayer undergoes hyperpolarization and condensation with small concentrations of pCer, narrowing the liquid-expanded (LE) to liquid-condensed (LC) pSM main phase transition by inducing intermolecular interactions and chain ordering. Beyond this point, the phase diagram no longer reveals the presence of the pSM-enriched phase. Differential scanning calorimetry (DSC) of multilamellar vesicles reveals a widening of the pSM main gel-fluid phase transition (41°C) upon pCer incorporation, with formation of a further endotherm at higher temperatures that can be deconvoluted into two components. DSC data reflect the presence of pCer-enriched domains coexisting, in different proportions, with a pSM-enriched phase. The pSM-enriched phase is no longer detected in DSC thermograms containing >30 mol % pCer. Direct domain visualization has been carried out by fluorescence techniques on both lipid model systems. Epifluorescence microscopy of mixed monolayers at low pCer content shows concentration-dependent, morphologically different pCer-enriched LC domain formation over a pSM-enriched LE phase, in which pCer content close to 5 and 30 mol % can be determined for the LE and LC phases, respectively. In addition, fluorescence confocal microscopy of giant vesicles further confirms the formation of segregated pCer-enriched lipid domains. Vesicles cannot form at >40 mol % pCer content. Altogether, the presence of at least two immiscible phase-segregated pSM-pCer mixtures of different compositions is proposed at high pSM content. A condensed phase (with domains segregated from the liquid-expanded phase) showing enhanced thermodynamic stability occurs near a compositional ratio of 2:1 (pSM/pCer). These observations become significant on the basis of the ceramide-induced microdomain aggregation and platform formation upon sphingomyelinase enzymatic activity on cellular membranes.  相似文献   

14.
The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydrophobic surfactant protein fraction (containing both the SP-B and SP-C peptides) at physiologically relevant concentrations (approximately 1 wt %). Even at such low levels, the SP-B/C peptides induce the formation of a new phase in the surface monolayer that is of lower intrinsic order than the liquid condensed (LC) phase that forms in the pure lipid mixture. This presumably leads to a higher structural flexibility of the surface monolayer at high lateral pressure. Variation of the subphase pH indicates that electrostatic interaction dominates the association of the SP-B/C peptides with the lipid monolayer. As evidenced from dark-field microscopy, monolayer material is excluded from the DPPC/DPPG surface film on compression and forms three-dimensional, surface-associated structures of micron dimensions. Such exclusion bodies formed only with SP-B/C peptides. This observation provides the first direct optical evidence for the squeeze-out of pulmonary surfactant material in situ at the air-water interface upon increasing monolayer surface pressures.  相似文献   

15.
The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.  相似文献   

16.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

17.
Crane JM  Putz G  Hall SB 《Biophysical journal》1999,77(6):3134-3143
Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface.  相似文献   

18.
The headgroup conformation of the phospholipid dipalmitoyl-glycero-phosphocholine (DPPC) in monolayers at the air/water interface has been studied by neutron reflection in the fluid like liquid-expanded (LE) and in the crystal like solid (S) phase. Information on the headgroup conformation in the two phases has been obtained by scattering contrast variation of the lipid monolayer using four differently deuterated species of DPPC: perdeuterated, chain perdeuterated, choline group perdeuterated and selectively headgroup deuterated. Since the measurements were done mainly on a subphase of null reflecting water (i.e. water scattering contrast matched to the air) there is no subphase contribution to reflectivity and the simplest one layer model can be employed for the data analysis, thus minimising the number of free parameters. A remarkable change of the headgroup orientation was observed between the LE and the S phase. We found that the phosphate-nitrogen dipole of the DPPC headgroup exhibits an in-plane orientation with respect to the monolayer in the LE phase but it assumes a more parallel orientation to the surface normal at lateral pressures above 30 mN/m (S phase). Moreover, this conformational change is accompanied by a significant alteration of the headgroup hydration.Abbreviations DPPC Dipalmitoyl-Phosphatidylcholine - DMPC Dimyristoyl-Phosphatidylcholine - DPPE Dipalmitoyl-Phosphatidylethanolamine - DMPE Dimyristoyl-Phosphatidylethanolamine - DMPA Dimyristoyl-Phosphatic Acid - DMPG Dimyristoyl-Phosphatidylglycerol Correspondence to: T M. Bayed  相似文献   

19.
Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer "reservoirs" of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazing incidence x-ray diffraction shows that the solid phase domains consist of two-dimensional crystals similar to those formed by mixtures of dipalmitoylphosphatidylcholine and palmitic acid. The condensed domains grow as the surface pressure is increased until they coalesce, trapping protrusions of liquid matrix. At approximately 40 mN/m, a plateau exists in the isotherm at which the solid phase fraction increases from approximately 60 to 90%, at which the surface viscosity diverges. The viscosity is driven by the percolation of the solid phase domains, which depends on the solid phase area fraction of the monolayer. The high viscosity may lead to high monolayer collapse pressures, help prevent atelectasis, and minimize the flow of lung surfactant out of the alveoli due to surface tension gradients.  相似文献   

20.
In order to enable the possible use of dipalmitoylphosphatidylcholine as an artificial lung surfactant, the addition of dioleoylphosphatidylcholine or dioleoylphosphatidylglycerol has been suggested. A preferential loss of molecules of the second component during compression of the interfacial layer was proposed. In this study two types of measurement were carried out in order to verify such a preferential squeeze-out. In the first type, electron micrographs of a pure dipalmitoylphosphatidylcholine monolayer and of mixed monolayers of dipalmitoylphosphatidylcholine and egg phosphatidylglycerol were taken in order to study the nature of the structures formed during compression of the monolayer. The electron microscopy photos show horizontally stacked layers in the collapse phase of dipalmitoylphosphatidylcholine, and long vertical ridges in the mixed monolayers up to 20% second component. At higher concentrations of the second component no such structures can be detected. The second type involved monolayer studies with binary mixtures of dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine or dioleoylphosphatidylglycerol, one of the pair being always radioactively labelled. Counting the radioactivities in bulk phase and monolayer after compression revealed nonselective squeeze-out of either component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号