首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular identification and characterization of phytoplasmas from infected grapevines in four locations in Serbia are reported. Phytoplasmas were detected and identified by restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rDNA. Grapevine yellows were associated with three molecularly distinguishable phytoplasmas: Flavescence dorée phytoplasmas (elm yellows group: 16SrV‐C subgroup) were present only in the Župa Aleksandrovac region; Bois noir phytoplasmas (stolbur group: 16SrXII‐A subgroup) were detected in the other surveyed regions; a mixed infection of European stone fruit yellows (apple proliferation group: 16SrX‐B subgroup) and Bois noir phytoplasmas was identified in one sample. A finer molecular characterization by RFLP analysis of rpS3 and SecY genes of Flavescence dorée phytoplasmas from Župa Aleksandrovac confirmed that the Serbian genotype is indistinguishable from a strain from the Veneto region, Italy. Characterization of the tuf gene of Bois noir phytoplasmas showed lack of amplification of samples from Erdevik. HpaII profiles of tuf gene PCR products of samples from Pali and Radmilovac were identical, and were indistinguishable from one of the two profiles produced by samples from Italian grapevines used as reference strains.  相似文献   

2.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

3.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

4.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

5.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

6.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

7.
Aster yellows phytoplasma were detected, for the first time, in peach trees in Al‐Jubiha and Homret Al‐Sahen area. Leaves of infected trees showed yellow or reddish, irregular water‐soaked blotches. Discoloured areas become dry and brittle and the dead tissues dropped out. Under severe infections, leaves fall down and fruits dropped prematurely. Phytoplasmas were detected from all symptomatic peach trees by polymerase chain reaction (PCR) using universal phytoplasmas primers P1/P7 followed by R16F2/R2. No amplification products were obtained from templates of asymptomatic peaches. PCR products (1.2 kb) used for restriction fragment length polymorphism analysis (RFLP) after digestion with endonuclease AluI, HpaII, KpnI and RsaI produced the same restriction profiles for all samples, and they were identical with those of American aster yellows (16SrI) phytoplasma strain. This paper is the first report on aster yellows phytoplasma affecting peach trees in Jordan.  相似文献   

8.
Primula acaulis (L.) Hill. plants showing stunting, leaf‐yellowing and virescence were first discovered in the Czech Republic. Polymerase chain reactions with subsequent restriction fragment length polymorphism analyses and sequencing enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐B, tufI‐B, rpI‐B, groELIB‐III and SecY‐IB subgroups. Phylogeny of the 16S rRNA gene sequences as well as sequence analysis of several chromosomal regions, such as the 16S‐23S ribosomal operon, ribosomal proteins, spc ribosomal protein operon, genes for elongation factor EF‐Tu, molecular chaperonin large subunit GroEL, immunodominant membrane protein, ribosome recycling factor, urydilate kinase, ATP‐ and Zn2+‐dependent proteases not only confirmed its affiliation with the ‘Candidatus Phytoplasma asteris’ species but also enabled its detailed molecular characterization. The less researched regions of phytoplasma genome (amp, adk, hflB, pyrHfrr genes) could be valuable as additional markers for phytoplasma through differentiation especially within the 16SrI‐B ribosomal subgroup.  相似文献   

9.
The seasonal variation in the colonization of two Japanese plum trees by European stone fruit yellows (ESFY) phytoplasmas was followed by polymerase chain reaction (PCR) detection for 2 years. Samples were obtained monthly from nine above-ground sampling sites and one root. The colonization of the trees was systemic from July until leaf fall. The ESFY phytoplasmas were also detected in off-season grown leaves during winter until March. In contrast, almost no phytoplasmas could be detected in normally grown leaves in April and May. Similar results have been obtained for European plum cultivars using 4′,6-diamidino-2-phenylindole (DAPI) staining and PCR and for apricot cultivars tested by PCR. A possible explanation of this phenomenon is discussed. The root system of the corresponding Prunus marianna GF 8–1 rootstocks remained infected throughout the year and the phytoplasmas were equally distributed within the roots as determined when the trees were uprooted. In vitro culture was used to demonstrate that ESFY phytoplasmas detected by PCR in winter in aerial parts of the tree were viable. Nine ESFY-diseased shoot cultures were obtained at four different time points during winter. Sampling protocols for ESFY phytoplasma detection by PCR in routine diagnosis are discussed.  相似文献   

10.
Long plantains (Plantago lanceolata L.) with symptoms resembling those associated with phytoplasma infection were observed repeatedly during the period 2000–2008 in southern Bohemia (Czech Republic). The symptoms of the plants were leaf yellowing, stunted growth, flower phyllody and lack of seed production. Transmission electron microscopy showed phytoplasmas in the sieve cells of affected plants but not in healthy ones. Association of phytoplasmas with the disease was confirmed by polymerase chain reaction using phytoplasma-specific universal ribosomal primers R16F2n/R16R2. An amplification product of the expected size (1.2 kb) was observed in all samples of the symptomatic long plantains. The restriction profiles obtained from digestion of the PCR products with three endonucleases (AluI, HhaI, MseI) showed that the phytoplasmas infecting long plantains in the Czech Republic were indistinguishable from those belonging to the aster yellows group (subgroup 16SrI-B). Sequence analysis of 1748 bp of the ribosomal operon indicated that the closest related phytoplasma was that associated with ‘Rehmannia glutinosa var. purpurea’, originating also in Bohemia. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in plants of P. lanceolata.  相似文献   

11.
A disease with symptoms similar to palm lethal yellowing was noticed in the early 2013 in Khuzestan Province (Iran) in date palm (Phoenix dactylifera). Infected trees displaying symptoms of streak yellows and varied in the incidence and severity of yellowing. A study was initiated to determine whether phytoplasma was the causal agent. Polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) methods using universal phytoplasma primers pairs R16mF1/mR1 and M1/M2 were employed to detect putative phytoplasma(s) associated with date palm trees. Nested PCR using universal primers revealed that 40 out of 53 trees were positive for phytoplasma while asymptomatic date palms from another location (controls) tested negative. RFLP analyses and DNA sequencing of 16S rDNA indicated that the presence of two different phytoplasmas most closely related to clover proliferation (CP) phytoplasma (group 16SrVI) and ash yellows (AY) phytoplasma (group 16SrVII). Sequence analysis confirmed that palm streak yellows phytoplasmas in each group were uniform and to be phylogenetically closest to “CandidatusP. fraxini” (MF374755) and “Ca. P. trifolii” isolate Rus‐CP361Fc1 (KX773529). Result of RFLP analysis of secA gene of positive samples using TruI and TaqI endonuclease is in agreement with rDNA analysis. On this basis, both strains were classified as members of subgroups 16SrVI‐A and 16SrVII‐A. This is the first report of a phytoplasma related to CP and AY phytoplasma causing date palm yellows disease symptoms.  相似文献   

12.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

13.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

14.
In Alberta, Canada, valerian grown for medicinal purposes and sowthistle, a common weed, showed typical aster yellows symptoms. Molecular diagnosis was made using a universal primer pair (P1 / P7) designed to amplify the entire 16S rRNA gene and the 16 / 23S intergenic spacer region in a direct polymerase chain reaction (PCR) assay. This primer pair amplified the DNA samples from valerian and sowthistle and reference controls (AY‐27, CP, PWB, AY of canola, LWB). They produced the expected PCR products of 1.8 kb, which were diluted and used as templates in a nested PCR. Two primer pairs R16F2n / R2 and P3 / P7 amplified the DNA templates giving PCR products of 1.2 and 0.32 kb, respectively. No PCR product was obtained with either set of primers and DNA isolated from healthy plants. Restriction fragment length polymorphism (RFLP) was used to analyse the partial 16S rDNA sequences (1.2 kb) of all phytoplasma DNA samples after restriction with four endonucleases (AluI, HhaI, MseI and RsaI). The restriction patterns of these strains were found to be identical with the RFLP pattern of the AY phytoplasma reference control (AY‐27 strain). Based on the RFLP data, the two strains are members of subgroup A of the AY 16Sr1 group. We report here the first molecular study on the association of AY phytoplasmas with valerian and sowthistle plants.  相似文献   

15.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

16.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

17.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

18.
Lilium spp. with symptoms of severe fasciation were observed in Southern and central Bohemia during the period 1999-2003. Nucleic acids extracted from symptomatic and asymptomatic plants were used in nested-PCR assays with primers amplifying 16S-23S rRNA sequences specific for phytoplasmas. The subsequent nested-PCR with phytoplasma group-specific primers followed by RFLP analyses and the 16S ribosomal gene sequencing, allowed classification of the detected phytoplasmas in the aster yellows group, subgroups 16SrI-B and 16SrI-C alone, and in mixed infection. Samples infected by 16SrI-C phytoplasmas showed different overlapping RFLP profiles after TruI digestion of R16F2/R2 amplicons. Two of these amplicons were sequenced, one of them directly and the other after cloning; sequence analyses and blast alignment confirmed the presence of two different overlapping patterns in samples studied. The sequences obtained were closely related, respectively, to operon A and operon B ribosomal sequences of the clover phyllody phytoplasma. Direct PCR followed by RFLP analyses of the tuf gene with two restriction enzymes showed no differences from reference strain of subgroup 16SrI-C. Infection with aster yellows phytoplasmas of 16SrI-B subgroup in asymptomatic lilies cv. Sunray was also detected.  相似文献   

19.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

20.
Phytoplasmas were detected in Sophora japonica cv. golden and Robinia pseudoacacia with diseased branches of witches'‐broom collected in Haidian district, Beijing, China. Phytoplasma cells were observed in phloem sieve elements of symptomatic S. japonica cv. golden by transmission electron microscopy. The presence of phytoplasmas was further confirmed by sequence determination of partial gene sequences of 16S rDNA, rp (ribosomal protein) and secY. Phylogenetic trees and virtual restriction fragment length polymorphism (RFLP) analyses indicated that the phytoplasmas causing S. japonica cv. golden witches'‐broom (SJGWB) and R. pseudoacacia witches'‐broom (RPWB) belong to the 16SrV (elm yellows) group, and they are most closely related to subgroup 16SrV‐B, rpV‐C and secYV‐C jujube witches'‐broom (JWB) phytoplasma. Comparative analyses indicated that the phytoplasma of RPWB was closer to the JWB and that R. pseudoacacia might serve as an alternative host plant of JWB phytoplasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号