首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper uses the analysis of a data set to examine a number of issues in Bayesian statistics and the application of MCMC methods. The data concern the selectivity of fishing nets and logistic regression is used to relate the size of a fish to the probability it will be retained or escape from a trawl net. Hierarchical models relate information from different trawls and posterior distributions are determined using MCMC. Centring data is shown to radically reduce autocorrelation in chains and Rao‐Blackwellisation and chain‐thinning are found to have little effect on parameter estimates. The results of four convergence diagnostics are compared and the sensitivity of the posterior distribution to the prior distribution is examined using a novel method. Nested models are fitted to the data and compared using intrinsic Bayes factors, pseudo‐Bayes factors and credible intervals.  相似文献   

2.
We propose a Bayesian method for testing molecular clock hypotheses for use with aligned sequence data from multiple taxa. Our method utilizes a nonreversible nucleotide substitution model to avoid the necessity of specifying either a known tree relating the taxa or an outgroup for rooting the tree. We employ reversible jump Markov chain Monte Carlo to sample from the posterior distribution of the phylogenetic model parameters and conduct hypothesis testing using Bayes factors, the ratio of the posterior to prior odds of competing models. Here, the Bayes factors reflect the relative support of the sequence data for equal rates of evolutionary change between taxa versus unequal rates, averaged over all possible phylogenetic parameters, including the tree and root position. As the molecular clock model is a restriction of the more general unequal rates model, we use the Savage-Dickey ratio to estimate the Bayes factors. The Savage-Dickey ratio provides a convenient approach to calculating Bayes factors in favor of sharp hypotheses. Critical to calculating the Savage-Dickey ratio is a determination of the prior induced on the modeling restrictions. We demonstrate our method on a well-studied mtDNA sequence data set consisting of nine primates. We find strong support against a global molecular clock, but do find support for a local clock among the anthropoids. We provide mathematical derivations of the induced priors on branch length restrictions assuming equally likely trees. These derivations also have more general applicability to the examination of prior assumptions in Bayesian phylogenetics.  相似文献   

3.
Green PE  Park T 《Biometrics》2003,59(4):886-896
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.  相似文献   

4.
A fundamental issue in quantitative trait locus (QTL) mapping is to determine the plausibility of the presence of a QTL at a given genome location. Bayesian analysis offers an attractive way of testing alternative models (here, QTL vs. no-QTL) via the Bayes factor. There have been several numerical approaches to computing the Bayes factor, mostly based on Markov Chain Monte Carlo (MCMC), but these strategies are subject to numerical or stability problems. We propose a simple and stable approach to calculating the Bayes factor between nested models. The procedure is based on a reparameterization of a variance component model in terms of intra-class correlation. The Bayes factor can then be easily calculated from the output of a MCMC scheme by averaging conditional densities at the null intra-class correlation. We studied the performance of the method using simulation. We applied this approach to QTL analysis in an outbred population. We also compared it with the Likelihood Ratio Test and we analyzed its stability. Simulation results were very similar to the simulated parameters. The posterior probability of the QTL model increases as the QTL effect does. The location of the QTL was also correctly obtained. The use of meta-analysis is suggested from the properties of the Bayes factor.  相似文献   

5.
The implementation of genetic groups in BLUP evaluations accounts for different expectations of breeding values in base animals. Notwithstanding, many feasible structures of genetic groups exist and there are no analytical tools described to compare them easily. In this sense, the recent development of a simple and stable procedure to calculate the Bayes factor between nested competing models allowed us to develop a new approach of that method focused on compared models with different structures of random genetic groups. The procedure is based on a reparameterization of the model in terms of intraclass correlation of genetic groups. The Bayes factor can be easily calculated from the output of a Markov chain Monte Carlo sampling by averaging conditional densities at the null intraclass correlation. It compares two nested models, a model with a given structure of genetic groups against a model without genetic groups. The calculation of the Bayes factor between different structures of genetic groups can be quickly and easily obtained from the Bayes factor between the nested models. We applied this approach to a weaning weight data set of the Bruna dels Pirineus beef cattle, comparing several structures of genetic groups, and the final results showed that the preferable structure was an only group for unknown dams and different groups for unknown sires for each year of calving.  相似文献   

6.
Accurate and fast computation of quantitative genetic variance parameters is of great importance in both natural and breeding populations. For experimental designs with complex relationship structures it can be important to include both additive and dominance variance components in the statistical model. In this study, we introduce a Bayesian Gibbs sampling approach for estimation of additive and dominance genetic variances in the traditional infinitesimal model. The method can handle general pedigrees without inbreeding. To optimize between computational time and good mixing of the Markov chain Monte Carlo (MCMC) chains, we used a hybrid Gibbs sampler that combines a single site and a blocked Gibbs sampler. The speed of the hybrid sampler and the mixing of the single-site sampler were further improved by the use of pretransformed variables. Two traits (height and trunk diameter) from a previously published diallel progeny test of Scots pine (Pinus sylvestris L.) and two large simulated data sets with different levels of dominance variance were analyzed. We also performed Bayesian model comparison on the basis of the posterior predictive loss approach. Results showed that models with both additive and dominance components had the best fit for both height and diameter and for the simulated data with high dominance. For the simulated data with low dominance, we needed an informative prior to avoid the dominance variance component becoming overestimated. The narrow-sense heritability estimates in the Scots pine data were lower compared to the earlier results, which is not surprising because the level of dominance variance was rather high, especially for diameter. In general, the hybrid sampler was considerably faster than the blocked sampler and displayed better mixing properties than the single-site sampler.  相似文献   

7.
Varona L  Gómez-Raya L  Rauw WM  Clop A  Ovilo C  Noguera JL 《Genetics》2004,166(2):1025-1035
A simple procedure to calculate the Bayes factor between linked and pleiotropic QTL models is presented. The Bayes factor is calculated from the marginal prior and posterior densities of the locations of the QTL under a linkage and a pleiotropy model. The procedure is computed with a Gibbs sampler, and it can be easily applied to any model including the location of the QTL as a variable. The procedure was compared with a multivariate least-squares method. The proposed procedure showed better results in terms of power of detection of linkage when low information is available. As information increases, the performance of both procedures becomes similar. An example using data provided by an Iberian by Landrace pig intercross is presented. The results showed that three different QTL segregate in SSC6: a pleiotropic QTL affects myristic, palmitic, and eicosadienoic fatty acids; another pleiotropic QTL affects palmitoleic, stearic, and vaccenic fatty acids; and a third QTL affects the percentage of linoleic acid. In the example, the Bayes factor approach was more powerful than the multivariate least-squares approach.  相似文献   

8.
We analyzed the phylogeny of the Neotropical pitvipers within the Porthidium group (including intra-specific through inter-generic relationships) using 1.4 kb of DNA sequences from two mitochondrial protein-coding genes (ND4 and cyt-b). We investigated how Bayesian Markov chain Monte-Carlo (MCMC) phylogenetic hypotheses based on this 'mesoscale' dataset were affected by analysis under various complex models of nucleotide evolution that partition models across the dataset. We develop an approach, employing three statistics (Akaike weights, Bayes factors, and relative Bayes factors), for examining the performance of complex models in order to identify the best-fit model for data analysis. Our results suggest that: (1) model choice may have important practical effects on phylogenetic conclusions even for mesoscale datasets, (2) the use of a complex partitioned model did not produce widespread increases or decreases in nodal posterior probability support, and (3) most differences in resolution resulting from model choice were concentrated at deeper nodes. Our phylogenetic estimates of relationships among members of the Porthidium group (genera: Atropoides, Cerrophidion, and Porthidium) resolve the monophyly of the three genera. Bayesian MCMC results suggest that Cerrophidion and Porthidium form a clade that is the sister taxon to Atropoides. In addition to resolving the intra-specific relationships among a majority of Porthidium group taxa, our results highlight phylogeographic patterns across Middle and South America and suggest that each of the three genera may harbor undescribed species diversity.  相似文献   

9.
The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.  相似文献   

10.
Bayesian phylogenetic methods are generating noticeable enthusiasm in the field of molecular systematics. Many phylogenetic models are often at stake, and different approaches are used to compare them within a Bayesian framework. The Bayes factor, defined as the ratio of the marginal likelihoods of two competing models, plays a key role in Bayesian model selection. We focus on an alternative estimator of the marginal likelihood whose computation is still a challenging problem. Several computational solutions have been proposed, none of which can be considered outperforming the others simultaneously in terms of simplicity of implementation, computational burden and precision of the estimates. Practitioners and researchers, often led by available software, have privileged so far the simplicity of the harmonic mean (HM) estimator. However, it is known that the resulting estimates of the Bayesian evidence in favor of one model are biased and often inaccurate, up to having an infinite variance so that the reliability of the corresponding conclusions is doubtful. We consider possible improvements of the generalized harmonic mean (GHM) idea that recycle Markov Chain Monte Carlo (MCMC) simulations from the posterior, share the computational simplicity of the original HM estimator, but, unlike it, overcome the infinite variance issue. We show reliability and comparative performance of the improved harmonic mean estimators comparing them to approximation techniques relying on improved variants of the thermodynamic integration.  相似文献   

11.
Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass‐action models of receptor‐mediated cell death. The width of the individual parameter distributions is largely determined by non‐identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model‐based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (~20‐fold) for competing ‘direct’ and ‘indirect’ apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single‐cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty.  相似文献   

12.
Li Z  Sillanpää MJ 《Genetics》2012,190(1):231-249
Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point estimates without providing any measures of uncertainty (i.e., interval estimates). The variational Bayes method, stemming from the mean field theory in theoretical physics, is regarded as a compromise between MAP and MCMC estimation, which can be efficiently computed and produces the uncertainty measures of the estimates. Furthermore, variational Bayes methods can be regarded as the extension of traditional expectation-maximization (EM) algorithms and can be applied to a broader class of Bayesian models. Thus, the use of variational Bayes algorithms based on three hierarchical shrinkage models including Bayesian adaptive shrinkage, Bayesian LASSO, and extended Bayesian LASSO is proposed here. These methods performed generally well and were found to be highly competitive with their MCMC counterparts in our example analyses. The use of posterior credible intervals and permutation tests are considered for decision making between quantitative trait loci (QTL) and non-QTL. The performance of the presented models is also compared with R/qtlbim and R/BhGLM packages, using a previously studied simulated public epistatic data set.  相似文献   

13.
Ekholm A  McDonald JW  Smith PW 《Biometrics》2000,56(3):712-718
Models for a multivariate binary response are parameterized by univariate marginal probabilities and dependence ratios of all orders. The w-order dependence ratio is the joint success probability of w binary responses divided by the joint success probability assuming independence. This parameterization supports likelihood-based inference for both regression parameters, relating marginal probabilities to explanatory variables, and association model parameters, relating dependence ratios to simple and meaningful mechanisms. Five types of association models are proposed, where responses are (1) independent given a necessary factor for the possibility of a success, (2) independent given a latent binary factor, (3) independent given a latent beta distributed variable, (4) follow a Markov chain, and (5) follow one of two first-order Markov chains depending on the realization of a binary latent factor. These models are illustrated by reanalyzing three data sets, foremost a set of binary time series on auranofin therapy against arthritis. Likelihood-based approaches are contrasted with approaches based on generalized estimating equations. Association models specified by dependence ratios are contrasted with other models for a multivariate binary response that are specified by odds ratios or correlation coefficients.  相似文献   

14.
Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters   总被引:2,自引:0,他引:2  
Accurate and fast estimation of genetic parameters that underlie quantitative traits using mixed linear models with additive and dominance effects is of great importance in both natural and breeding populations. Here, we propose a new fast adaptive Markov chain Monte Carlo (MCMC) sampling algorithm for the estimation of genetic parameters in the linear mixed model with several random effects. In the learning phase of our algorithm, we use the hybrid Gibbs sampler to learn the covariance structure of the variance components. In the second phase of the algorithm, we use this covariance structure to formulate an effective proposal distribution for a Metropolis-Hastings algorithm, which uses a likelihood function in which the random effects have been integrated out. Compared with the hybrid Gibbs sampler, the new algorithm had better mixing properties and was approximately twice as fast to run. Our new algorithm was able to detect different modes in the posterior distribution. In addition, the posterior mode estimates from the adaptive MCMC method were close to the REML (residual maximum likelihood) estimates. Moreover, our exponential prior for inverse variance components was vague and enabled the estimated mode of the posterior variance to be practically zero, which was in agreement with the support from the likelihood (in the case of no dominance). The method performance is illustrated using simulated data sets with replicates and field data in barley.  相似文献   

15.
Markov chain Monte Carlo (MCMC) methods have been proposed to overcome computational problems in linkage and segregation analyses. This approach involves sampling genotypes at the marker and trait loci. Among MCMC methods, scalar-Gibbs is the easiest to implement, and it is used in genetics. However, the Markov chain that corresponds to scalar-Gibbs may not be irreducible when the marker locus has more than two alleles, and even when the chain is irreducible, mixing has been observed to be slow. Joint sampling of genotypes has been proposed as a strategy to overcome these problems. An algorithm that combines the Elston-Stewart algorithm and iterative peeling (ESIP sampler) to sample genotypes jointly from the entire pedigree is used in this study. Here, it is shown that the ESIP sampler yields an irreducible Markov chain, regardless of the number of alleles at a locus. Further, results obtained by ESIP sampler are compared with other methods in the literature. Of the methods that are guaranteed to be irreducible, ESIP was the most efficient.  相似文献   

16.

Background

In quantitative trait mapping and genomic prediction, Bayesian variable selection methods have gained popularity in conjunction with the increase in marker data and computational resources. Whereas shrinkage-inducing methods are common tools in genomic prediction, rigorous decision making in mapping studies using such models is not well established and the robustness of posterior results is subject to misspecified assumptions because of weak biological prior evidence.

Methods

Here, we evaluate the impact of prior specifications in a shrinkage-based Bayesian variable selection method which is based on a mixture of uniform priors applied to genetic marker effects that we presented in a previous study. Unlike most other shrinkage approaches, the use of a mixture of uniform priors provides a coherent framework for inference based on Bayes factors. To evaluate the robustness of genetic association under varying prior specifications, Bayes factors are compared as signals of positive marker association, whereas genomic estimated breeding values are considered for genomic selection. The impact of specific prior specifications is reduced by calculation of combined estimates from multiple specifications. A Gibbs sampler is used to perform Markov chain Monte Carlo estimation (MCMC) and a generalized expectation-maximization algorithm as a faster alternative for maximum a posteriori point estimation. The performance of the method is evaluated by using two publicly available data examples: the simulated QTLMAS XII data set and a real data set from a population of pigs.

Results

Combined estimates of Bayes factors were very successful in identifying quantitative trait loci, and the ranking of Bayes factors was fairly stable among markers with positive signals of association under varying prior assumptions, but their magnitudes varied considerably. Genomic estimated breeding values using the mixture of uniform priors compared well to other approaches for both data sets and loss of accuracy with the generalized expectation-maximization algorithm was small as compared to that with MCMC.

Conclusions

Since no error-free method to specify priors is available for complex biological phenomena, exploring a wide variety of prior specifications and combining results provides some solution to this problem. For this purpose, the mixture of uniform priors approach is especially suitable, because it comprises a wide and flexible family of distributions and computationally intensive estimation can be carried out in a reasonable amount of time.  相似文献   

17.
An increased availability of genotypes at marker loci has prompted the development of models that include the effect of individual genes. Selection based on these models is known as marker-assisted selection (MAS). MAS is known to be efficient especially for traits that have low heritability and non-additive gene action. BLUP methodology under non-additive gene action is not feasible for large inbred or crossbred pedigrees. It is easy to incorporate non-additive gene action in a finite locus model. Under such a model, the unobservable genotypic values can be predicted using the conditional mean of the genotypic values given the data. To compute this conditional mean, conditional genotype probabilities must be computed. In this study these probabilities were computed using iterative peeling, and three Markov chain Monte Carlo (MCMC) methods – scalar Gibbs, blocking Gibbs, and a sampler that combines the Elston Stewart algorithm with iterative peeling (ESIP). The performance of these four methods was assessed using simulated data. For pedigrees with loops, iterative peeling fails to provide accurate genotype probability estimates for some pedigree members. Also, computing time is exponentially related to the number of loci in the model. For MCMC methods, a linear relationship can be maintained by sampling genotypes one locus at a time. Out of the three MCMC methods considered, ESIP, performed the best while scalar Gibbs performed the worst.  相似文献   

18.
Tong L  Thompson E 《Human heredity》2008,65(3):142-153
To detect the positions of disease loci, lod scores are calculated at multiple chromosomal positions given trait and marker data on members of pedigrees. Exact lod score calculations are often impossible when the size of the pedigree and the number of markers are both large. In this case, a Markov Chain Monte Carlo (MCMC) approach provides an approximation. However, to provide accurate results, mixing performance is always a key issue in these MCMC methods. In this paper, we propose two methods to improve MCMC sampling and hence obtain more accurate lod score estimates in shorter computation time. The first improvement generalizes the block-Gibbs meiosis (M) sampler to multiple meiosis (MM) sampler in which multiple meioses are updated jointly, across all loci. The second one divides the computations on a large pedigree into several parts by conditioning on the haplotypes of some 'key' individuals. We perform exact calculations for the descendant parts where more data are often available, and combine this information with sampling of the hidden variables in the ancestral parts. Our approaches are expected to be most useful for data on a large pedigree with a lot of missing data.  相似文献   

19.
R/qtlbim is an extensible, interactive environment for the Bayesian Interval Mapping of QTL, built on top of R/qtl (Broman et al., 2003), providing Bayesian analysis of multiple interacting quantitative trait loci (QTL) models for continuous, binary and ordinal traits in experimental crosses. It includes several efficient Markov chain Monte Carlo (MCMC) algorithms for evaluating the posterior of genetic architectures, i.e. the number and locations of QTL, their main and epistatic effects and gene-environment interactions. R/qtlbim provides extensive informative graphical and numerical summaries, and model selection and convergence diagnostics of the MCMC output, illustrated through the vignette, example and demo capabilities of R (R Development Core Team 2006). Availability: The package is freely available from cran.r-project.org.  相似文献   

20.
Mapping quantitative trait loci using the MCMC procedure in SAS   总被引:1,自引:0,他引:1  
S Xu  Z Hu 《Heredity》2011,106(2):357-369
The MCMC procedure in SAS (called PROC MCMC) is particularly designed for Bayesian analysis using the Markov chain Monte Carlo (MCMC) algorithm. The program is sufficiently general to handle very complicated statistical models and arbitrary prior distributions. This study introduces the SAS/MCMC procedure and demonstrates the application of the program to quantitative trait locus (QTL) mapping. A real life QTL mapping experiment in wheat female fertility trait was used as an example for the demonstration. The fertility trait phenotypes were described under three different models: (1) the Poisson model, (2) the Bernoulli model and (3) the zero-truncated Poisson model. One QTL was identified on the second chromosome. This QTL appears to control the switch of seed-producing ability of female plants but does not affect the number of seeds produced once the switch is turned on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号