首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple cloning of cuticle protein genes was performed by sequencing of cDNAs randomly selected from a cDNA library of wing discs just before pupation, and nine different cuticular protein genes were identified. Thirty-one clones of a cuticle protein gene were identified from the 1050 randomly sequenced clones; about 3% were cuticle protein genes in the W3-stage wing disc cDNA library. The sequence diversity of the deduced amino acid sequences of isolated Bombyx cuticle genes was examined along with the expression profiles. The deduced amino acid sequences of the nine cuticle protein genes contained a putative signal peptide at the N-terminal region and a very conserved hydrophilic region known as the R and R motif. The developmental expression of cuticle genes was classified into two types: pupation (five clones were expressed only around pupation) and pupation and mid-pupal (four clones were expressed around this stage). All the isolated genes were expressed in the head, thoracic, and abdominal regions of the epidermis at different levels around pupation, but no expression was observed in the epidermis at the fourth molting stage.  相似文献   

2.
Quassin, a mosquito larvicide isolated from Quassia amara, inhibits tyrosinase activity in the larvae of Culex quinquefasciatus. Since tyrosinase is directly involved in sclerotisation of the cuticle, it is suggested that quassin, as a larvicide, inhibits development of the cuticle. In presence of quassin phenylalanine, tyrosine and L-dopa levels were increased in larvae. In the larval stages, mosquitoes have a high concentration of phenylalanine and tyrosine with the level of the latter being very high just before pupation and then declines sharply. Monoamine oxidase (MAO), an enzyme directly involved in the metabolism of catecholamines, remained unaffected by quassin, in fact the level of adrenaline also remained unchanged in larvae during quassin poisoning. MAO showed high variation in its activity between synthetic and natural substrates. Tyramine is not a substrate for MAO. Tyrosinase activity was high in developing stages and negligibly low in adults and showed specificity to L-dopa. Phenylalanine and tyramine are unaffected by tyrosinase. Blood feeding did not influence the activity of both these enzymes.  相似文献   

3.
Parasitism of fifth instar Manduca sexta larvae by the gregarious parasitoid Cotesia congregata prevented normal storage of tyrosine in the hemolymph, whereas total tyrosine levels increased over eight times in the hemolymph of unparasitized larvae by day 4. Tyrosine glucoside, the hemolymph storage form of tyrosine and the precursor for pupal cuticle sclerotizing agents, was found only in trace amounts in parasitized larvae at the time of parasitoid emergence, but had increased to over 6 mM in hemolymph of unparasitized larvae. Concentrations of dopamine and N-β-alanyldopamine (NBAD), precursors for melanization and sclerotization of cuticle, respectively, had approximately doubled in the hemolymph of parasitized larvae by the day of parasitoid emergence, but not in unparasitized larvae. Catecholamine biosynthesis may be transiently stimulated for wound-healing, as black melanic pigmentation appeared around the wasp emergence holes in the host integument. C. congregata larvae accumulate tyrosine, dopamine, and NBAD by the time of emergence and cocoon spinning, either by direct uptake or by synthesis from precursors obtained from the host. NBAD increased in parasitoid larvae close to pupation, suggesting it functions as the main precursor for pupal cuticle tanning. Both dopamine and NBAD increased dramatically in pharate adult wasps just before eclosion and N-acetyldopamine (NADA) appeared for the first time. Dopamine was highest in concentration and total amount, and it can serve both as a precursor for black melanic pigmentation of adult wasp cuticle and for synthesis of NADA and NBAD, the precursors for cuticle sclerotization. Arch. Insect Biochem. Physiol. 38:193–201, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
We investigated the synthesis and localization of Drosophila pupal cuticle proteins by immunochemical techniques using both a complex antiserum and monoclonal antibodies. A set of low molecular weight (15,000-25,000) pupal cuticle proteins are synthesized by the imaginal disk epithelium before pupation. After pupation, synthesis of the low molecular weight proteins ceases and a set of unrelated high molecular weight proteins (40,000-82,000) are synthesized and incorporated into the pupal cuticle. Ultrastructural changes in the cuticle deposited before and after pupation correlate with the switch in cuticle protein synthesis. A similar biphasic accumulation of low and high molecular weight pupal cuticle proteins is also seen in imaginal discs cultured in vitro. The low molecular weight pupal cuticle proteins accumulate in response to a pulse of the insect steroid hormone 20-hydroxyecdysone and begin to appear 6 h after the withdrawal of the hormone from the culture medium. The high molecular weight pupal cuticle proteins accumulate later in culture; a second pulse of hormone appears to be necessary for the accumulation of two of these proteins.  相似文献   

5.
M Locke  P Huie 《Tissue & cell》1979,11(2):277-291
The apical plasma membranes of Calpodes epidermal cells have small fattened areas or plaques with an extra density upon their cytoplasmic face. The plaques are typically at the tips of microvilli. The are present during the deposition of fibrous cuticle and the cuticulin layer. Since the plaques are close (less than 15nm) to the sites where these kinds of cuticle first appear, they are presumed to have a role in their synthesis and/or deposition and orientation. When fifth stage larval cuticle deposition ceases prior to pupation, the plaques are lost as the area of the apical plasma membrane is reduced. The plaques pass from the surface into pinocytosis vesicles and multivesicular bodies where they are presumably digested. The loss of plaques occurs as the blood level of moulting hormone reaches a peak at the critical period after which the prothoracic glands are no longer needed for pupation. Apolysis or separation of the epidermis from the old cuticle is the stage when plaques are absent, the old ones have been lost but the new ones have yet to form. After the critical period, the epidermis prepared for pupation with a phase of elevated RNA synthesis at the end of which plaques and microvilli reform in time to secrete the new cuticulin layer and later the fibrous cuticle of the pharate pupa. There is a new generation of plaques for each moult and succeeding intermoult and each generation is involved in two kinds of cuticle deposition before involution and redifferentiation.  相似文献   

6.
P F Credland 《Tissue & cell》1983,15(3):477-488
The aquatic, apneustic larva of the midge, Chironomus riparius, has a very thin (up to 5 micrometers), readily deformable, post-cephalic cuticle. The ultrastructure of this cuticle from newly moulted and older final instar animals, and exuvia shed at pupation, has been examined using routine methods and also after the extraction of proteins with formamide and acetic acid. From the results described, and using established criteria, it is inferred that an exocuticle is present and represents about 25% of the thickness of the mature procuticle, the remainder being endocuticle. Therefore, it would seem that this exceptionally delicate cuticle conforms to the conventional plan of tanned or sclerotized solid cuticles, unlike those reported in the larvae of cyclorrhaphous dipterans such as blowflies or other soft-bodied insects. This is the first account, using experimental techniques, of the fine structure of sectioned cuticle from nematocerous dipteran larvae. It also indicates the value of the exuvium as a source of information about cuticle structure.  相似文献   

7.
The sqt-1 gene encodes a C. elegans cuticle collagen that when defective can cause dramatic alterations of organismal morphology. Specific antisera were used to examine the assembly of wild-type and mutant SQT-1 in the cuticle. Wild-type SQT-1 chains associate into dimer, tetramer, and higher oligomers that are cross-linked by non-reducible, presumably tyrosine-derived, covalent bonds. The SQT-1 pattern differs from the bulk of cuticle collagens which are found in trimer and larger forms. sqt-1 mutations that cause left-handed helical twisting of animals remove a conserved carboxyl-domain cysteine and inhibit formation of these non-reducible bonds. SQT-1 monomers accumulate and novel trimer-sized products form. A conserved tyrosine immediately adjacent to the affected cysteine suggests that disulfide bond formation is required for this tyrosine to form a cross-link. sqt-1 mutations that cause right-handed helical twisting affect conserved arginines in a predicted cleavage site for a subtilisin-like protease. These mutant SQT-1 molecules retain residues on the amino side of the predicted cleavage site and are larger than wild-type by the amount expected if cleavage failed to occur. The conservation of this site in all nematode cuticle collagens indicates that they are all synthesized as procollagens that are processed by subtilisin-like proteases.  相似文献   

8.
《Insect Biochemistry》1990,20(6):645-652
Post-emergence levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and ketocatechol were determined in cuticle from adult Tenebrio molitor. Possible pathways for biosynthesis of DOPAC were studied by comparing the incorporation of injected [U-14C]tyrosine, [7-14C]dopamine, [7-14C]DOPA, [7-14C]tyramine, [U-14C]p-hydroxyphenylpyruvic acid (p-HPPA) and [ring-3H]p-hydroxyphenylacetic acid (p-HPAA) into cuticular DOPAC during its period of maximal increase 1–3 days after adult emergence. Increased incorporation of [U-14C]tyrosine between days 0 and 3 suggests rapid de novo biosynthesis of DOPAC from this primary precursor. Of the putative intermediates tested, only p-HPPA had a pattern of incorporation similar to that seen with tyrosine. Since p-HPAA was poorly incorporated into both cuticle and DOPAC, a tentative pathway tyrosine → p-HPPA → 3,4-dihydroxyphenylpyruvic acid → DOPAC is proposed.  相似文献   

9.
The insect wing is formed from an epithelial sheet that folds during development to establish a saclike tissue with an upper and a lower epithelial monolayer. The adult cuticle formed by the upper and lower monolayers has a distinctive pattern of thickened regions called veins. The venation pattern on the lower surface matches that on the upper surface. As demonstrated by transposition of grafts from the upper monolayer, determination of venation pattern occurs prior to pupation in both wing monolayers. However, the pattern is not expressed until later in adult development. Expression of this determined pattern occurs autonomously in most circumstances. One circumstance in which the pattern fails to be expressed is in pieces of the upper monolayer that are isolated from the lower monolayer before adult cuticle deposition and expression of venation pattern. The only evident interaction between the two monolayers of the wing occurs during a 3-day period, 6–8 days after pupation. During this time, the basal laminae segregating upper monolayer from lower monolayer disappear, and the basal ends of cells form desmosomal junctions at the interface between upper and lower monolayer. Transposition as well as isolation of tissue fragments from the upper monolayer suggest that this interaction between the basal surfaces of the two monolayers is a prerequisite for evocation of venation pattern.  相似文献   

10.
Pulse-labeling experiments of salivary glands from the prepupal stages of development showed selectively high rates of synthesis of a set of low molecular weight proteins (6K–12K). These proteins are stably maintained in the salivary glands during prepupal development and are subsequently transported to the pupation fluid (found between the pupal case and the prepupal cuticle) when pupation occurs. These small polypeptides are very basic with the major components having isoelectric points of 8.6–8.7 and the minor components having isoelectric points of 9.1–9.5. This study shows the continuing function of the salivary glands—specifically, the synthesis and secretion of a set of proteins with a putative role in pupation.  相似文献   

11.
The epidermal cell commitment (to pupation or formation of immaculate larvae) and related haemolymph ecdysteroid titres of the southwestern corn borer, Diatraea grandiosella were studied in both nondiapause-bound and diapause-bound last-instar female larvae. Cell commitment was estimated by examining the characteristics of new cuticle secreted in response to an injection of 20-hydroxyecdysone. Haemolymph ecdysteroid titres were determined by radioimmunoassay. Juvenile hormone effect on epidermal cell commitment was studied by applying a juvenile hormone mimic (ZR-515) to last-instar non-diapause-bound larvae and examining the resulting cuticle.In non-diapause-bound larvae, the epidermis of different body regions was committed to pupal development at different times. When pupal cuticular characteristics were evaluated by a scoring system, it appeared that the development of normal pupal cuticle is discontinuous. Three sudden increases in pupal characteristics were observed at 1.67, 2.67 and 3.67 days into the last-larval instar. Haemolymph ecdysteroid titre changes were correlated with the sudden increases in pupal characteristics. Peak ecdysteroid titres were found at 1.67, 2.33, and 3.33 days into the final instar. A fourth ecdysteroid peak (138.8 ng/ml of haemolymph) occurred in pharate pupae. In contrast, the commitment of diapause-bound larvae to produce immaculate integument was made in a fast and continuous fashion. Full commitment was made by 50% of the individuals 4 days (ca. first quarter) into the stadium. Haemolymph ecdysteroid titres fluctuated during the first 2 weeks of the stadium but no significant peaks were observed prior to pharate stage. An ecdysteroid peak (29.8 ng/ml of haemolymph) was identified in pharate immaculate larvae.Pupal development could be completely prevented in 26.7% of nondiapause-bound larvae as late as 4 days into the last instar by topical application of ZR-515. This indicates that the commitment to pupation as revealed by 20-hydroxyecdysone injection is reversible.  相似文献   

12.
Rhythmic abdominal pumping movements in a pupa of giant mealworm beetle Zophobas atratus caused large hemolymph pressure pulses of approximately 20 mmHg. The abdominal pumping movements were completely blocked by transecting the ventral nerve cord (VNC) between the first and second abdominal ganglia. Transection of the VNC until 2 days after pupation caused a developmental defect of adult legs: morphogenesis of the tibial and tarsal segments was severely retarded, and the segments remained covered with a thick pupal cuticle. The developmental defect was rescued by artificially inducing rhythmic abdominal bending for 3 days after transection of VNC. Blocking of the abdominal pump did not increase the amount of water loss during the pupal period. The transplanted tibial segments lacking active tracheal ventilation could form a thick adult cuticle. The results suggest that abdominal pumping movements during the pupal period support the development of adult legs by facilitating hemolymph circulation.  相似文献   

13.
The sulfation of tyrosine residues is an important post-translational modification involved in the regulation of protein function. We examined the activity of worm tyrosylprotein sulfotransferase (TPST-1) on a typical cuticle collagen, ROL-6, in C. elegans. We verified that TPST-1 sulfates three tyrosine residues of ROL-6 in vitro. We found that these tyrosine residues are important for the secretion of ROL-6::GFP. Mutant ROL-6::GFP proteins that contain more than two substitutions of the target tyrosine residues are severely deficient in cuticle localization. Consistently, knock down of tpst-1 blocked the cuticle localization of ROL-6::GFP. Therefore, the sulfation of ROL-6 by TPST-1 is critical for the proper localization of ROL-6. We also confirmed that worm TPST-1 is localized to the trans-Golgi network (TGN). Our results indicate that TPST-1 regulates cuticle organization by promoting the transport of ROL-6 from the TGN to the cuticle.  相似文献   

14.
Slow infusions of β-ecdysone are more effective in eliciting a normal physiological response than are discrete injections of the hormone. Infusion of β-ecdysone into final instar larvae in the presence of juvenile hormone (JH) induces apolysis and the deposition of a normal larval cuticle. In the absence of JH larvae display the prodromal symptoms of pupation (exposure of the heart, purging of the gut, etc.) in response to a β-ecdysone infusion. The occurrence of certain covert physiological events that accompany the exposure of the heart are evidently necessary to prepare a larva for pupation. An infusion of β-ecdysone can induce apolysis and pupal cuticle deposition only after the prodromal signs of pupation have become evident. Of the two pulses of ecdysone that normally precede pupation in Manduca, the first is apparently responsible for the genetic switchover from larval to pupal development whereas the second one triggers apolysis and the subsequent events that lead to pupation. Results obtained from infusion experiments in which the dose and exposure time were varied independently are consistent with the idea that ecdysone has to be present for a certain minimum time above a threshold concentration to induce a physiological response. The requisite exposure time is apparently not dose-dependent.  相似文献   

15.
The larval antenna of Bombyx mori has 13 sensilla and about 52 sensory neurons in its distal portion. The axons form two nerve cords which unite in the cranial hemocoel to supply the brain as the olfactory nerve. The antennal imaginal disc, which is a thick pseudostratified epithelium continuous with the antennal epidermis, thickens markedly during the 5th instar by rapid cell proliferation. At the prepupal stage cell proliferation ceases and the disc everts to form a large pupal antenna. Simultaneously, an extensive cell rearrangement occurs in the antennal epidermis and the disc tissue becomes much thinner because of the abrupt expansion of antennal surface area. The two larval nerve cords thin down markedly by degeneration of axons, but they do not disintegrate totally even after the onset of pupation. The epidermis of the larval antenna forms the distal portion of the pupal antenna, while the imaginal disc forms the more basal portion. Development to the adult antenna occurs almost immediately after the onset of pupation; many adult neurons appear in the simple epidermis facing toward the thick outer side of the newly formed pupal cuticle. By 12 hours after the onset of pupation, these neurons align themselves in many transverse rows which are the first sign of the adult antennal configuration. Addition of these neuronal axons to the once-thinned nerve cords causes resumed thickening of the cords during the first 24 hours and thereafter. Differentiation of adult sensilla begins in the next 24 hours and is almost completed at the third day of pupation, which requires a total of 10 days.  相似文献   

16.
The incorporation of U-14C-leucine into the cuticle occurs within the first 2 hr after ecdysis whereas U-14C-tyrosine is incorporated at a steady rate for approximately 8 hr. These data suggest that most of the cuticle protein is synthesized and laid down within a short time after ecdysis. On the other hand, tyrosine and/or metabolites (such as N-acetyl-dopamine) are translocated into the cuticle for several hours. This indicates that the sclerotization process may take place over an extended period.  相似文献   

17.
The thickness and total protein content of the ventral abdominal cuticle of the female tsetse, Glossina austeni, increase during the early part of each pregnancy cycle, reaching a maximum at approximately 2 days after ovulation. They decrease thereafter, and reach a minimum value just before larviposition. Virgin females do not exhibit a cycle of protein content or thickness in the cuticle. Preliminary data on the incorporation of [3H]tyrosine or [3H]leucine into the water-soluble proteins of the ventral abdominal cuticle at the time of the second larviposition suggest that there is rapid turnover of protein in the cuticle at this time. These observations are consistent with the net storage of protein in the cuticle during the early part of pregnancy cycle followed by a net depletion of that store as the nutritional demands of the rapidly growing larva in utero exceed the capacity of the ingested blood meals to supply them.  相似文献   

18.
The cuticle of C. elegans is a highly resistant structure that surrounds the exterior of the animal(1-4). The cuticle not only protects the animal from the environment, but also determines body shape and plays a role in motility(4-6). Several layers secreted by epidermal cells comprise the cuticle, including an outermost lipid layer(7). Circumferential ridges in the cuticle called annuli pattern the length of the animal and are present during all stages of development(8). Alae are longitudinal ridges that are present during specific stages of development, including L1, dauer, and adult stages(2,9). Mutations in genes that affect cuticular collagen organization can alter cuticular structure and animal body morphology(5,6,10,11). While cuticular imaging using compound microscopy with DIC optics is possible, current methods that highlight cuticular structures include fluorescent transgene expression(12), antibody staining(13), and electron microscopy(1). Labeled wheat germ agglutinin (WGA) has also been used to visualize cuticular glycoproteins, but is limited in resolving finer cuticular structures(14). Staining of cuticular surface using fluorescent dye has been observed, but never characterized in detail(15). We present a method to visualize cuticle in live C. elegans using the red fluorescent lipophilic dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), which is commonly used in C. elegans to visualize environmentally exposed neurons. This optimized protocol for DiI staining is a simple, robust method for high resolution fluorescent visualization of annuli, alae, vulva, male tail, and hermaphrodite tail spike in C. elegans.  相似文献   

19.
Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.  相似文献   

20.
Characterization of tyrosine hydroxylase from Manduca sexta   总被引:1,自引:0,他引:1  
In insects, 3,4-dihydroxyphenylalanine (DOPA) is required for tanning of newly formed cuticle and the production of melanin during some types of immune responses. DOPA is produced by the hydroxylation of tyrosine, and this reaction can be catalyzed by two types of enzymes: tyrosine hydroxylase (TH) and phenoloxidase (PO). TH is required for cuticle tanning in Drosophila melanogaster and for cuticle pigmentation in other insect species, but additional functions of TH have been uncertain. In contrast, an immune function for PO has been well documented. The goal of this study was to characterize TH from Manduca sexta with a focus on its possible contribution to cuticle tanning and immune-associated melanization. We cloned a full-length TH cDNA, purified recombinant TH, and confirmed that MsTH and MsPO have tyrosine hydroxylating activity. To determine possible functions, we analyzed TH expression profiles. TH mRNA and protein were present in eggs at the stage when the pharate larval cuticle begins to tan and also in the integument of molting larvae. The amount of TH in the integument was correlated with the degree of cuticle tanning. Unlike PO, which was found to be constitutively expressed by hemocytes and was present in plasma, TH was upregulated in hemocytes and the fat body in response to an immune challenge and remained intracellular. These data suggest that TH is required for cuticle tanning and immunity in M. sexta. Based on the collective information from many studies, we propose a model in which TH is a major producer of the DOPA required for both cuticle tanning and immune-associated melanization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号