首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human homolog of the JE gene encodes a monocyte secretory protein.   总被引:31,自引:5,他引:26       下载免费PDF全文
The mouse fibroblast gene, JE, was one of the first platelet-derived growth factor-inducible genes to be described as such. The protein encoded by JE (mJE) is the prototype of a large family of secreted, cytokinelike glycoproteins, all of whose members are induced by a mitogenic or activation signal in monocytes macrophages, and T lymphocytes; JE is the only member to have been identified in fibroblasts. We report the identification of a human homolog for murine JE, cloned from human fibroblasts. The protein predicted by the coding sequence of human JE (hJE) is 55 amino acids shorter than mJE, and its sequence is identical to that of a recently purified monocyte chemoattractant. When expressed in COS cells, the human JE cDNA directed the secretion of N-glycosylated proteins of Mr 16,000 to 18,000 as well as proteins of Mr 15,500, 15,000, and 13,000. Antibodies raised against mJE recognized these hJE species, all of which were secreted by human fibroblasts. hJE expression was stimulated in HL60 cells during phorbol myristate acetate-induced monocytoid differentiation. However, resting human monocytes constitutively secreted hJE; treatment with gamma interferon did not enhance hJE expression in monocytes, and treatment with phorbol myristate acetate or lipopolysaccharide inhibited its expression. Thus, human JE encodes yet another member of the large family of JE-related cytokinelike proteins, in this case a novel human monocyte and fibroblast secretory protein.  相似文献   

3.
We have examined the role of monocyte chemoattractant protein 1 (MCP 1) in the pathogenesis of monocyte/macrophage-dependent IgA immune complex alveolitis in the rat. Rat MCP 1 was cloned and expressed in order to facilitate analysis of its function in rat models of human disease. A cDNA library was constructed from rat pulmonary artery endothelial cells stimulated with TNF-alpha. The cDNA library was screened with synthetic oligonucleotide probes based on the recently published rat MCP 1 cDNA sequence. Among numerous MCP 1-positive clones, four full length (approximately 480 bp) cDNA were rescued, amplified by polymerase chain reaction, and ligated into a pJVETLZ baculovirus transfer vector. Spodoptera frugiperda insect cells (Sf-21) infected with baculovirus recombinants (Auto-grapha california nuclear polyhedrosis virus) bearing properly oriented MCP 1 cDNA (AcMCP 1) directed the expression of unique peptides of 18, 21, and 23 kDa. Treatment of AcMCP 1-infected Sf-21 cells with tunicamycin resulted in reduced production of the 21- and 23-kDa proteins and an increase in 16- to 18-kDa products, the predicted size range of uncleaved and nonglycosylated rat MCP 1. Denatured and refolded 23-kDa and 21-kDa rat MCP 1 species exhibited dose-dependent monocyte-specific chemotactic activity at concentrations as low as 10(-10) M whereas the 18-kDa species exhibited negligible activity. Antibodies that react with the immunoblot, block rat rMCP 1-directed monocyte chemotaxis, and neutralize monocyte-specific chemotactic activity secreted by TNF-stimulated rat endothelial cells were raised in rabbits immunized with the 23-kDa MCP 1 species. Intravenous administration of anti-MCP 1 antibodies upon initiation of IgA immune complex lung injury resulted in a marked reduction in lung injury as measured by pulmonary vascular permeability, alveolar hemorrhage, and pulmonary monocyte/macrophage recruitment and pulmonary monocyte/macrophage recruitment. These data suggest that MCP 1 may play an important role in the pathogenesis of monocyte/macrophage-dependent IgA immune complex alveolitis in the rat.  相似文献   

4.
A recent study demonstrated that PDGF-inducible JE is an inflammatory cytokine that directs chemotactic activity of monocytes. Accumulation of monocyte/macrophage lineage cells at site of bone tissue sites is very important for formation of multinucleate osteoclasts, which mediate bone resorption. Since transforming growth factor-beta (TGF-beta) is a potent regulator in bone remodeling, we examined whether TGF-beta induced JE gene expression in mouse osteoblastic cells, MC3T3-E1. TGF-beta induced a maximum JE mRNA expression at 3 hr after initiation of the cytokine treatment. This maximal expression was observed in when TGF-beta was used at a concentration of 1 ng/ml. The chemotactic activity for human monocytes was detected in conditioned medium of TGF-beta-treated cells, and the chemotactic activity was neutralized by anti-JE serum treatment.  相似文献   

5.
6.
A medullary type mouse thymic epithelial cell line MTEC1 can produce chemokines. Crude culture supernant of MTEC1 cells was concentrated by controlled-pore glass beads. One of these chemotactic proteins was isolated from MTEC1 supernatant and purified to homogeneity by heparin-Sepharose affinity chromatography, cation-exchange FPLC and Reverse Phase-HPLC. The chemotactic factor for both lymphocytes and monocytes was identified as a 30 kD protein by SDS-PAGE analysis under reducing conditions. After cleavage of the NH2-terminally blocked protein with formic acid, the amino acid sequence of the internal fragment was analyzed and found to be identical to the amino acid sequence of mouse MCP-1/JE. The protein was hence identified as a glycosylated MCP-1/JE-like chemokine secreted by thymic epithelial cells. The characterization of chemokines produced by thymic stromal cells will benefit the analysis of the mechanism of thymus homing and the finding of new chemokines.  相似文献   

7.
髓质型小鼠胸腺上皮细胞系MTEC1自发分泌趋化因子(Chemokines),细胞培养上清先经CPG珠(Controlled-pore glass beads)初步浓缩纯化,再依次经肝素-Sepharose柱亲和层析、阳离子交换FPLC及RP-HPLC分离纯化,得到了一个30kD的蛋白质分子,对淋巴细胞和单核巨噬细胞均有趋化活性。此蛋白分子N端封闭,因而先经甲酸水解得到蛋白片段,分析了其中24个氨基酸的序列,发现其与小鼠MCP-1/JE(Monocyte Chemoattractant Pro-tein-1)完全相同。以上结果说明,MTEC1产生的是mMCP-1/JE类趋化因子。  相似文献   

8.
The induction of phosphorylation of both protein P1 and protein synthesis initiation factor eIF-2 alpha and the inhibition of virus replication were examined in mouse L929 fibroblasts treated with either natural mouse or individual cloned human interferons (IFN). Natural mouse IFN synthesized in Newcastle disease virus-induced L929 cells and two cloned human leukocyte IFN subspecies synthesized in Escherichia coli, IFN-alpha D and IFN-alpha A/D, possessed antiviral activity in L929 cells as measured by single cycle virus yield reduction with both vesicular stomatitis virus and reovirus. Natural L929 IFN and cloned IFNs, alpha D and alpha A/D, also induced the protein kinase that catalyzed the phosphorylation of endogenous ribosome-associated protein P1 and the alpha subunit of purified initiation factor eIF-2. Two other cloned human IFNs, alpha A and alpha D/A, were poor inducers of both the antiviral state and the phosphorylation of P1 and eIF-2 alpha in mouse L929 cells. The ability of individual human IFN-alpha subspecies to induce P1 and eIF-2 alpha phosphorylation in mouse L929 cells correlated with their ability to induce an antiviral state. Furthermore, the detailed kinetics of induction, in mouse L929 cells, of P1 and eIF-2 alpha phosphorylation and of the antiviral state by the heterologous cloned human IFN-alpha A/D were equivalent to the kinetics of induction by the homologous natural mouse L929 IFN. These results suggest that different subspecies of biologically active IFN induce equivalent antiviral activities and biochemical changes in mouse L929 cells, and that protein phosphorylation may play a major role in the antiviral mechanism of IFN action in mouse L929 fibroblasts.  相似文献   

9.
10.
Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell-binding fragment contains a cryptic site for monocyte chemotaxis which is expressed upon enzymatic cleavage of fibronectin.  相似文献   

11.
Japanese encephalitis (JE) virus was shown to grow in in vitro cultures of human monocytes. Interferon (IFN)-alpha and IFN-gamma inhibited JE virus production by the infected monocytes in the absence of anti-JE virus antibody, but interleukin (IL)-1 alpha, IL-2, IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte-CSF (G-CSF), and tumor necrosis factor (TNF)-alpha did not show a significant inhibition. Antibody against JE virus increased the JE virus production by the infected monocytes probably by enhanced uptake of virus-antibody complexes via Fc receptors. IFN-gamma and GM-CSF increased JE virus production by monocytes in the presence of anti-JE virus antibody, whereas IFN-alpha inhibited JE virus production even in the presence of the antibody. The other 5 cytokines (IL-1 alpha, IL-2, IL-3, G-CSF, and TNF-alpha) did not show a significant effect on JE virus production by monocytes in the presence or absence of the antibody.  相似文献   

12.
Activation of the lymphotoxin beta-receptor (LTbetaR), a member of the tumor necrosis factor receptor family, plays a crucial role in lymphoid organogenesis and tumor development. Lymphotoxin alpha(1)beta(2) (LTalpha(1)beta(2)) and LIGHT have been identified as membrane anchored ligands for the LTbetaR. While LTbetaR is expressed on a wide range of cell types e.g. fibroblasts and monocytes, the ligands are expressed only on activated lymphocytes and NK cells. In order to characterize LTbetaR expression and the biological consequences of LTbetaR activation rat anti-mouse LTbetaR monoclonal antibodies were generated. These antibodies recognized a mouse LTbetaR-Ig fusion protein as well as endogenous LTbetaR on a variety of mouse fibroblast and fibrosarcoma cell lines. Specificity was demonstrated by the lack of binding to LTbetaR-deficient embryonic fibroblasts. Competitive binding studies revealed that three different epitopes were recognized by the monoclonal antibodies. Two of the monoclonals activated the LTbetaR and induced activation of NFkappaB and secretion of MIP-2 and IL-6 in L929 mouse fibroblast cells. MIP-2 and IL-6 secretion was NFkappaB-dependent because IkappaB-transfected cells released significantly reduced amounts of both mediators.  相似文献   

13.
Because platelet-derived growth factor (PDGF) may be released at sites where neutrophil proteinases may also be released, we examined the effects of neutrophil elastase and cathepsin G upon the chemotactic and mitogenic activities of PDGF. Elastase abolished the chemotactic activity of PDGF for fibroblasts but had no effect on its chemotactic activity for monocytes, or on its mitogenic activity for 3T3 cells or its capacity to bind to 3T3 cells. Cathepsin G had no effect upon the chemotactic or mitogenic activities of PDGF. In contrast, trypsin eliminated the chemotactic activity of PDGF for monocytes and fibroblasts and the mitogenic activity of PDGF. After reduction and alkylation, PDGF retained full chemotactic activity for fibroblasts and monocytes but exhibited no mitogenic activity and only limited binding to 3T3 cells. These results indicate separate domains on PDGF for fibroblast chemotactic and mitogenic activity and for monocyte and fibroblast chemotactic activity and raise the possibility that the biological activities of PDGF may be modified selectively in vivo. The findings further suggest that the majority of PDGF receptors on fibroblasts mediate mitogenic activity and that only a minority of the PDGF receptors on fibroblasts are responsible for chemotactic activity.  相似文献   

14.
15.
The kinetics of decay of the antiviral state and protein phosphorylation induced with natural mouse interferon (IFN) and with cloned human IFN were examined in monolayer cultures of mouse Ll929 fibroblast cells. The antiviral state measured by single cycle virus yield reduction with either vesicular stomatitis virus or reovirus decayed significantly within 2 to 3 days following removal of IFN and by 5 to 8 days virus yields had returned to the level of untreated control cells. Trypsinization of IFN-treated cells did not detectably alter the rate of decay of the antiviral state; however, the decay occurred slightly more rapidly in actively growing as compared to stationary cell cultures. The decay of the IFN-induced protein kinase which catalyzes the phosphorylation of endogenous protein P1 and purified initiation factor eIF-2 alpha correlated with the decay of the antiviral state. The decay rates of the antiviral state and protein kinase observed in mouse L929 cells that had been treated with natural mouse IFN synthesized in Newcastle disease virus-induced L929 cells were comparable to the decay rates observed in L929 cells that had been treated with recombinant human IFN-alpha A/D synthesized in Escherichia coli. The induction and decay of the antiviral state and protein kinase following treatment with a single dose of IFN did not significantly affect the sensitivity of the cell population to a subsequent treatment with a single dose of IFN. However, continuous treatment of L929 cells with natural mouse IFN or recombinant human IFN prevented the decay of both the antiviral state and protein kinase but also ultimately lead to cell death. The results suggest that protein phosphorylation may play an important role in the mechanism of IFN action in mouse L929 fibroblasts.  相似文献   

16.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

17.
The CX(3)C chemokine, fractalkine (FKN, CX(3)CL1), has multiple functions and exists as two distinct forms, a membrane-anchored protein and a soluble chemotactic peptide that cleaves from the cell surface FKN. In this study, we first demonstrated the expression of FKN in tumor necrosis factor (TNF)-alpha- and interleukin (IL)-4-stimulated human fibroblasts. The induction of FKN was observed for both forms. We also demonstrated monocyte chemotactic activity in the culture supernatant from the fibroblasts stimulated with these cytokines. These results suggest that TNF-alpha- and IL-4-stimulated fibroblasts may play an important role in accumulation of monocytes at inflammatory sites.  相似文献   

18.
The A-chain homodimers of the platelet-derived growth factor (PDGF AA) are widely expressed in normal and transformed cells. The mitogenic properties of PDGF AA are well established; however, the chemotactic potential of PDGF AA remains controversial. We now show that PDGF AA is a strong chemoattractant for human monocytes, granulocytes, and fetal bovine ligament fibroblasts. However, highly purified (greater than 98%) monocytes require the addition of lymphocytes or IL-1 for chemotactic responsiveness to PDGF AA but not for full chemotactic activity with formyl-methionyl-leucyl-phenylalanine (fMLP) or C5a. These results indicate that PDGF AA is a potent chemoattractant. These results also indicate that monocytes require activation either by lymphocytes or exogenous cytokines in order to respond chemotactically to PDGF AA but not to fMLP or C5a and suggest roles of the lymphocyte and cytokine in the chemotactic response of the monocyte to PDGF AA in vivo.  相似文献   

19.
Immunochemical methods were used to examine the effect of viral infection on the dynamics of intracellular ubiquitin pools. Infection of either the human lung carcinoma line A-549 or the mouse fibroblast line L929 with encephalomyocarditis virus had little effect on either the distribution or fractional level of intracellular ubiquitin conjugates. In contrast, viral infection resulted in a significant decline in the steady state content of the mono-ubiquitin conjugate to histone 2A (uH2A). Prior treatment with interferons protected against this decrease of uH2A. Furthermore, interferons induced the de novo synthesis of a 15-kDa protein immunologically related to ubiquitin. The ubiquitin cross-reactive protein (UCRP) was not constitutively present in control cells but was significantly induced in various cells sensitive to the biological effects of interferons. Induction of UCRP with respect to both time and interferon concentration dependence closely paralleled the appearance of resistance to viral infection and could be blocked by low levels of actinomycin D. Subsequent studies demonstrated that UCRP was identical to an interferon-induced 15-kDa protein whose sequence has recently been reported (Blomstrom, D. C., Fahey, D., Kutny, R., Korant, B. D., and Knight, E. (1986) J. Biol. Chem. 261, 8811-8816). An authentic sample of the 15-kDa protein was found to co-migrate with UCRP and to cross-react with two different anti-ubiquitin antibodies. Using the authentic 15-kDa protein as a standard, UCRP accumulated to 6.2 +/- 0.5 pmol/10(6) cells and 34 +/- 2 pmol/10(6) cells in interferon-treated A-549 and L929 cultures, respectively. Comparison of the primary sequence of the 15-kDa protein to that of ubiquitin indicated that the former is composed of two domains, each of which bears striking homology to ubiquitin. These observations suggest that the 15-kDa protein may represent one example of a functionally distinct family of ubiquitin-like proteins.  相似文献   

20.
Fractalkine (FK, CX3CL1) is a novel multidomain protein expressed on the surface of endothelial cells. As a full-length transmembrane protein, FK binds cells expressing CX3CR1, its cognate receptor, with high affinity. Proteolytic cleavage of FK releases a soluble form that is a potent chemoattractant for monocytes, T cells, and natural killer cells. Activation of protein kinase C dramatically increases the rate of this cleavage. Regulation of FK cleavage is critical for maintaining the balance between the immobilized and soluble forms, but the protease responsible has not been identified. Here we report that tumor necrosis factor-alpha-converting enzyme (TACE) is primarily responsible for the inducible cleavage of FK. After transfection into host cells, the proteolytic cleavage of FK was blocked by TACE-specific inhibitors and was not detected in cells genetically altered to remove TACE activity. In contrast, the constitutive cleavage of FK was not mediated by TACE and proceeded normally in TACE-null fibroblasts. We conclude that TACE is primarily responsible for the inducible cleavage of FK. These studies identify a potentially important link between local generation of potent cytokines and control of the balance between the cell adhesion and chemotactic properties of FK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号