首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure   总被引:19,自引:0,他引:19  
T Cech  M L Pardue 《Cell》1977,11(3):631-640
  相似文献   

2.
3.
We have developed a novel technique, named DamID, for the identification of DNA loci that interact in vivo with specific nuclear proteins in eukaryotes. By tethering Escherichia coli DNA adenine methyltransferase (Dam) to a chromatin protein, Dam can be targeted in vivo to native binding sites of this protein, resulting in local DNA methylation. Sites of methylation can subsequently be mapped using methylation-specific restriction enzymes or antibodies. We demonstrate the successful application of DamID both in Drosophila cell cultures and in whole flies. When Dam is tethered to the DNA-binding domain of GAL4, targeted methylation is limited to a region of a few kilobases surrounding a GAL4 binding sequence. Using DamID, we identified a number of expected and unexpected target loci for Drosophila heterochromatin protein 1. DamID has potential for genome-wide mapping of in vivo targets of chromatin proteins in various eukaryotes.  相似文献   

4.
Hybrid prokaryotic/eukaryotic expression vectors have been used to introduce Drosophila histone genes into CV-1 African green monkey tissue culture cells. Transfection of CV-1 cells with Drosophila genes under the control of insect DNA promoter sequences results in low level expression of histone genes. On the other hand, when the Drosophila H2a gene is juxtaposed downstream from the long terminal repeat sequence of Rous sarcoma virus (RSV) expression of the insect gene is considerably more efficient; both 3' polyadenylated insect histone messenger RNA and putative Drosophila H2a histone protein can be readily detected in the transduced cells. Using this RSV/H2a vector, we have been able to demonstrate the presence of Drosophila H2a histone in monomer nucleosome preparations isolated from transfected CV-1 cells. These results suggest the feasibility of 'remodeling' cellular chromatin in vivo in precisely defined ways. The techniques described may be generally applicable to other genes coding for chromosomal proteins.  相似文献   

5.
6.
7.
Two photoaffinity analogs of ethidium, 8-azido-3-amino, and 3-azido-8-amino-5-ethyl-6-phenylphenanthridinium chloride, have been used to probe the structure of mammalian chromatin and its interactions with the ethidium moiety. The monoazido analogs were established as suitable probes by comparing their interactions with chromatin and pure DNA prepared from chromatin to those of the parent ethidium bromide. Scatchard analysis of the binding data determined from spectrophotometric titrations showed that the analogs interacted with both nucleic acids in a manner similar to the parent compound. The effect of chromatin proteins on the interaction of the ethidium moiety with intact chromatin was investigated directly. By exposing the noncovalent complex to visible light, the monoazido analog was attached covalently in its interaction sites within chromatin, and the amount of drug bound covalently to DNA was determined for both protein-free DNA and chromatin. Using saturating concentrations of drug, DNA within intact chromatin was found to be associated with only half as much drug as DNA extracted from its protein prior to drug exposure. The distribution of drug bound within chromatin was determined following the attachment of the monoazido analog (by photoactivation) to chromatin that had undergone limited nuclease digestion. Several distinct populations isolated by size fractionation and quantitative measurements revealed that (1) both the core particles and the spacer-containing particles contained bound drug, reflecting high-affinity binding sites; and (2) chromatin particles containing 150 DNA base pairs (putatively nucleosome core structures) contained less total bound drug at high drug concentrations than those particles having intact spacer DNA.  相似文献   

8.
We used site-specific recombination catalyzed by the bacteriophage lambda Int system to probe DNA structure and metabolism in vivo. In vitro, the complexity of catenated products was linearly proportional to substrate supercoil density. A system was developed that gave efficient, controlled Int recombination in Escherichia coli cells. From a comparison of the data obtained in vitro and in vivo, we conclude that Int recombination does have the same mechanism in vivo as it has in vitro, but that only 40% of the plasmid DNA linking deficit in E. coli cells may be in the interwound supercoil form demonstrated in vitro. We suggest that this is the effective level of supercoiling in vivo, because the remaining DNA is constrained in alternative forms by protein binding. The study of Int recombination in vivo also provides an assay for enzymes that decatenate circular molecules, such as those formed during DNA replication. We find that DNA gyrase is the principal decatenase in E. coli and that it acts spontaneously and rapidly.  相似文献   

9.
Imprinting a determined state into the chromatin of Drosophila   总被引:53,自引:0,他引:53  
The Polycomb gene of Drosophila melanogaster is a member of a class of genes involved in the clonal transmission of the repressed state of bomeotic regulatory genes through development. Genetic evidence, and the finding of a molecular similarity between the Polycomb protein and a heterochromatin-associated protein of Drosophila, suggest that this mechanism of repression might be imprinted in the structure of the chromatin, rather than being sustained through the action of diffusible regulatory factors.  相似文献   

10.
Derivatives of the furocoumarin, psoralen, can penetrate intact cells or nuclei and cross-link opposite strands of the chromosomal DNA under the influence of long wave-length ultraviolet light. The potential of trioxsalen (4,5',8-trimethylpsoralen) as a probe for chromatin structure has been investigated. The DNA in both embryo nuclei and tissue culture cells from Drosophila melanogaster was found to be about 90% protected from trioxsalen binding relative to purified DNA. Digestion of trioxsalen-treated nuclei by micrococcal nuclease and gel electrophoresis of the resulting DNA gave the same type of band pattern that is characteristic of native, untreated nuclei are digestion. Nuclease digestion was therefore used to examine the distribution of bound trioxsalen in the DNA. The resulting DNA fragments were analyzed both by radioactivity measurements and quantitative electron microscopy. The nuclease cleaved intact photoreacted nuclei in such a way that preferential excision of trioxsalen containing regions of the DNA occurred, but, when acting upon purified DNA that contained bount trioxsalen, it attacked the trioxsalen-free regions preferentially. It was thus concluded that trixosalen binds at the sites corresponding to the regular nuclease-sensitive regions of the chromatin in nuclei.  相似文献   

11.
Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.  相似文献   

12.
13.
In mammals, DNA methylation is catalyzed by DNA methyltransferases (DNMTs) encoded by Dnmt1, Dnmt3a and Dnmt3b. Since, the mechanisms of regulation of Dnmts are still largely unknown, the physical interaction between Dnmt3b and chromatin was investigated in vivo and in vitro. In embryonic stem cell nuclei, Dnmt3b preferentially associated with histone H1-containing heterochromatin without any significant enrichment of silent-specific histone methylation. Recombinant Dnmt3b preferentially associated with nucleosomal DNA rather than naked DNA. Incorporation of histone H1 into nucleosomal arrays promoted the association of Dnmt3b with chromatin, whereas histone acetylation reduced Dnmt3b binding in vitro. In addition, Dnmt3b associated with histone deacetylase SirT1 in the nuclease resistant chromatin. These findings suggest that Dnmt3b is preferentially recruited into hypoacetylated and condensed chromatin. We propose that Dnmt3b is a 'reader' of higher-order chromatin structure leading to gene silencing through DNA methylation.  相似文献   

14.
Terbium as a fluorescent probe for DNA and chromatin.   总被引:3,自引:0,他引:3  
Terbium reacted with DNA and chromatin to form a complex in which terbium acted as a sensitive fluorescent probe. By measuring the narrow-line emission of Tb-3+ when DNA is selectively excited, the relative amount of Tb-3+ bound to the DNA can be calculated. Terbium was bound to DNA until one Tb-3+ was present for each phosphate group. After this point no more terbium was bound. TbCl3 was bound to chromatin in a linear manner until approximately 0.48 TbCl3 was added for each phosphate group in the chromatin-DNA solution. From these data it appears that 52% of the phosphate groups in chromatin were unavailable for binding. The binding of Tb-3+ to DNA can be reversed by prolonged dialysis against 0.5 M NaCl and chelating agents. The terbium ion is ideal in that it binds DNA tight enough so that completion of the reaction can be assumed but loose enough so that it can be removed by gentle means. Low concentrations of salt (up to 2 mM NaCl) enhance the quantum efficiency. Below pH 3 and above pH 7 the DNA-terbium complex will not form. Between pH 3 and pH 7 the quantum efficiency of the DNA terbium complex increases from either pH to a maximum at pH 5.5 to 5.6. Several biochemical uses for Tb-3+ ion are suggested.  相似文献   

15.
16.
17.
18.
DNA methyltransferase gene dDnmt2 and longevity of Drosophila   总被引:4,自引:0,他引:4  
The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methylation programs in general.  相似文献   

19.
The accessibility of DNA in nucleosome dimers (as a model of the chromosomal chain of nucleosomes) was determined by means of modification methylases from Haemophilus influenzae Rd. Using these enzymes, the rate of modification of nucleosome dimers is about one fifth the rate observed with protein-free DNA from chromatin subunit dimers. Methylated DNA sites in nucleosome dimers are readily accessible to micrococcal nuclease. The analysis of the fragment pattern of nucleosomes after methylation and mild nuclease treatment reveals that the methylated sites are predominantly located in the internucleosomal linker DNA. Polylysine binding experiments further support this interpretation. This compound preferentially interacts with the nucleosomal core DNA and protects it against internal cleavage. It neither affects the degradation of methylated sites drastically nor does it inhibit the methylation of nucleosome dimers. Thus, a combination of protection, cleavage and modification is proposed as a useful tool for the analysis of the structure of chromatin.  相似文献   

20.
DNA methylation and chromatin structure   总被引:19,自引:0,他引:19  
J Lewis  A Bird 《FEBS letters》1991,285(2):155-159
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号