首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
2.
3.
4.
5.
Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations.  相似文献   

6.
Recent biochemical studies have shown that the fibroblasts from a patient with Ehlers-Danlos Syndrome Type VIIB produce nearly equal amounts of normal and shortened pro-alpha 2(I) collagen chains (Wirtz, M.K., Glanville, R. W., Steinmann, B., Rao, V. H., and Hollister, D. (1987) J. Biol. Chem. 262, 16376-16385). Compositional and sequencing studies of the abnormal pro-alpha 2(I) chain identified an interstitial deletion of 18 residues corresponding to the N-telopeptide of the collagen molecule. Since this region is encoded by a 54-base pair exon, number 6, the protein defect could have been caused by gene deletion, abnormal pre-mRNA splicing, or both. Here, in order to elucidate the molecular nature of this mutation we have analyzed the sequences of pro-alpha 2(I) collagen cDNA and genomic clones obtained from RNA and DNA of the patient's fibroblasts. Using oligomer-specific cloning we identified a cDNA that contains a 54-base pair deletion corresponding precisely to the sequence of exon 6. Identification of the normal gene was based on the finding of an identical sequence polymorphism in a normal cDNA and in the genomic clone derived from one of the two collagen alleles. The other gene, instead, displayed a base substitution (T to C) in the obligatory GT dinucleotide of the 5' splice-site sequence of intron 6. Analysis of nearly 100 base pairs immediately 5' to exons 5, 6, and 7, and 3' to exons 5 and 7 did not reveal any additional change. Therefore, the data strongly suggest that the observed GT-to-GC transition at the splice donor site of intron 6 generates an abnormally spliced mRNA in which the sequence of exon 5 is joined to the sequence of exon 7. Since skipping of exon 6 does not interfere with the coding frame of the mRNA, the resulting shortened polypeptide, albeit utilized in the assembly of a procollagen trimer, ultimately causes the Ehlers-Danlos Syndrome Type VII phenotype.  相似文献   

7.
8.
Cloning and characterization of the human beta-glucuronidase gene   总被引:2,自引:0,他引:2  
We have isolated a cosmid clone that contains GUSB, the human gene encoding beta-glucuronidase. The 21-kb gene contains 12 exons ranging from 85 to 376 bp in length. Exon 6 corresponds to the 153-bp deletion in the shorter of two types of cDNAs reported earlier, supporting the hypothesis that this cDNA arose by alternate splicing leading to exon skipping. The insert contains 4.2 kb of sequence upstream from the first exon and 6 kb 3' of the last exon. The clone expresses human beta-glucuronidase in stably transformed rat XCtk- cells. Comparison of the human gene organization with that recently reported for the murine beta-glucuronidase gene revealed that the intron/exon boundaries are identical. In the splice junctions, the most highly conserved regions are those identified as consensus sequences, and these are at least as highly conserved as bases encoding the translated portion of the gene.  相似文献   

9.
kitl非编码区突变导致RNA剪切异常的小鼠   总被引:4,自引:0,他引:4  
本文主要采用RT-RCR技术从kitl1-bao纯合子和正常C57BL/6(B6)小鼠总RNA中扩增出kitl基因片段,测序后与GenBank(登录号:NM.013598)序列比对,找到mRNA上突变部位。PCR扩增kitl基因组DNA上对应部位进一步测序验证。结果发现kitl1-bao突变纯合子kitl基因mRNA缺少第8号外显子。在基因组DNA上kitl基因第8号内含子第2个碱基由T转换为C,是引起mRNA剪接错误的原因  相似文献   

10.
The serum level of the fourth component of complement (C4) in mice bearing the H-2k haplotype is only 1/10 to 1/20 of that of non-H-2k mice. We have analyzed C4 cDNA clones from B10.BR(H-2k) mouse liver and found aberrant C4 cDNA which contained a 200-base pair (bp) insertion between the exon 13 and exon 14 encoded sequences in addition to the normal C4 cDNA. The 5' 148 bp and the 3' 52 bp of this insert were derived from the B2 sequence, the short interspersed repeats of mouse genome, and the central part of intron 13, respectively. Sequence analysis of intron 13 of the C4k gene showed the presence of a complete copy of a B2 consensus sequence. The structure of aberrant C4 mRNA indicated that the possible 3' splice site in the B2 sequence and the cryptic 5' splice site in intron 13 were used. Both the insertion of the B2 sequence into intron 13 and the presence of aberrant mRNA in the liver were specific to H-2k-bearing mice, suggesting that the aberrant splicing due to the B2 insertion is the basis for low C4 expression in H-2k mice.  相似文献   

11.
12.
13.
14.
We have sequenced the mutational changes in eight mutants in the open reading frame of intron 4 of the cob gene on yeast mitochondrial DNA. Three have a cis-acting splicing defect, while the other inactivate a trans-recessive intron domain that specifies a trans-acting splicing factor. From phenotypic evidence, including analyses of the allele-specific extra proteins, we have identified a protein (P27) encoded wholly within the intron that appears to be the intron 4 splicing factor (maturase). The evidence suggests that P27 is a secondary translation product resulting from the proteolytic cleavage of a larger precursor encoded by exon and intron sequences, but an alternative model, in which P27 is a primary translation product, has not been ruled out.  相似文献   

15.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

16.
A case of inherited homozygous complement C3 deficiency (C3D) in a patient with systemic lupus erythematosus (SLE) and the molecular basis for this deficiency are reported. A 22-year-old Japanese male was diagnosed as having SLE and his medical history revealed recurrent tonsillitis and pneumonia. He was diagnosed as having C3D because of undetectable serum C3 level. His parents were consanguineous. Sequence analysis of C3D cDNA revealed a homozygous deletion of exon 39 (84bp). A single base substitution (AG to GG) in the 3'-splice acceptor site of intron 38 was identified by sequencing the genomic DNA. Expression of C3Delta(ex39) cDNA, the C3cDNA lacking exon 39, in COS-7 cells revealed that C3Delta(ex39) was retained in endoplasmic reticulum-Golgi intermediate compartment because of defective secretion. These data indicate that a novel AG-->GG 3'-splice acceptor site mutation in intron 38 caused aberrant splicing of exon 39, resulting in defective secretion of C3.  相似文献   

17.
Abnormal beta-hexosaminidase alpha chain cDNA clones were isolated from fibroblasts of an Ashkenazi Jewish patient with Tay-Sachs disease. Four abnormal cDNA clones were sequenced in their entirety. We showed previously that three of these mRNAs retained intron 12 with a mutation from G to C at the 5' donor site and that the patient was heterozygous with respect to this splicing defect (Ohno, K., and Suzuki, K., (1988) Biochem. Biophys. Res. Commun. 153, 463-469). One clone retained, in addition to intron 12, intron 13, which was truncated and polyadenylated due to a polyadenylation signal within intron 13. The fourth clone did not contain intron 12 and was missing exon 12. Some of these abnormal mRNAs were also missing one or more of upstream exons. The regions of exon 12-intron 12 and of upstream exons were evaluated in a total of 30 clones, including those completely sequenced, by restriction mapping and Southern analysis with appropriate probes. Of the 25 cDNA clones that included the exon 12-intron 12 region, 11 contained the exon 12-intron 12 sequence with the junctional transversion, and 11 were missing both exon 12 and intron 12. Among the 12 clones that included the region of exon 3-exon 9, 7 were missing one or more of upstream exons. Three clones gave results expected of normal cDNA in the region of exons 12 and 13. One of the three, furthermore, was 3.6-kilobases long and contained the completely normal beta-hexosaminidase alpha chain mRNA sequence on the 3' side and an abnormal 1.7-kilobase segment at the 5' end. These findings suggest that the splicing defect results in either retention of intron 12 or skipping of exon 12 in approximately equal proportions and that remote upstream exons are also frequently excised out. The three clones that were normal in the exon 12-intron 12 region could have derived from the other yet-to-be-characterized mutant allele. However, we were unable to obtain firm evidence that the abnormal upstream sequence is directly related to Tay-Sachs disease.  相似文献   

18.
We studied a French kindred with hereditary elliptocytosis associated with a spectrin variant (spectrin LePuy) containing a beta-spectrin chain that is truncated at its C terminus (Dhermy, D., Lecomte, M., Garbarz, M., Bournier, O., Galand, C., Gautero, H., Feo, C., Alloisio, N., Delaunay, J., and Boivin, P. (1982) J. Clin. Invest. 70, 707-715). The structure of the 3' end of the beta-spectrin gene, the region encoding the C terminus of beta-spectrin, was determined. Nucleotide sequencing of amplified genomic DNA revealed a mutation at position +4 (A----G) of the 5' donor consensus splice site of the intron following the third-to-last exon (exon X) in one beta-spectrin allele of a heterozygous patient. Agarose gel electrophoresis of polymerase chain reaction-amplified cDNA revealed an extra band of lower molecular weight, suggesting that the shortened beta-spectrin chain of spectrin LePuy arises from aberrant mRNA splicing. Nucleotide sequencing of the shorter cDNA amplification product revealed that the sequences encoding exon X were absent. Southern blotting of cDNA amplification products confirmed this result. The skipping of exon X causes a shift in the normal reading frame resulting in the encoding of a new amino acid sequence at the C terminus of the mutant beta-spectrin chain. A new in-frame stop codon is encountered following a single residue of this novel sequence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号