首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing recognition of the role for oxidative stress in cardiac disorders has led to extensive investigation on the protection by exogenous antioxidants against oxidative cardiac injury. On the other hand, another strategy for protecting against oxidative cardiac injury may be through upregulation of the endogenous antioxidants and phase 2 enzymes in the myocardium by chemical inducers. However, our current understanding of the chemical inducibility of cardiac cellular antioxidants and phase 2 enzymes is very limited. In this study, using rat cardiac H9c2 cells we have characterized the concentration- and time-dependent induction of cellular antioxidants and phase 2 enzymes by 3H-1,2-dithiole-3-thione (D3T), and the resultant chemoprotective effects on oxidative cardiac cell injury. Incubation of H9c2 cells with D3T resulted in a marked concentration- and time-dependent induction of a number of cellular antioxidants and phase 2 enzymes, including catalase, reduced glutathione (GSH), GSH peroxidase, glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). D3T treatment of H9c2 cells also caused an increase in mRNA expression of catalase, gamma-glutamylcysteine ligase catalytic subunit, GR, GSTA1, M1 and P1, and NQO1. Moreover, both mRNA and protein expression of Nrf2 were induced in D3T-treated cells. D3T pretreatment led to a marked protection against H9c2 cell injury elicited by various oxidants and simulated ischemia-reperfusion. D3T pretreatment also resulted in decreased intracellular accumulation of reactive oxygen in H9c2 cells after exposure to the oxidants as well as simulated ischemia-reperfusion. This study demonstrates that a series of endogenous antioxidants and phase 2 enzymes in H9c2 cells can be induced by D3T in a concentration- and time-dependent fashion, and that the D3T-upregulated cellular defenses are accompanied by a markedly increased resistance to oxidative cardiac cell injury.  相似文献   

2.
Alpha-lipoic acid (LA) has recently been reported to exert protective effects on various forms of oxidative cardiac disorders. However, the mechanisms underlying LA-mediated cardioprotection remain to be investigated. This study was undertaken to determine whether LA treatment could increase endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes, and whether such increased cellular defenses could afford protection against oxidative cardiac cell injury. Incubation of rat cardiac H9C2 cells with low micromolar concentrations of LA resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. These include catalase, reduced glutathione, glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase-1 (NOQ1). Induction of catalase and NOQ1 was most dramatic among the above LA-inducible antioxidants and phase 2 enzymes. To further investigate the protective effects of the LA-induced cellular defenses on oxidative cardiac cell injury, H9C2 cells were pretreated with LA (25-100 microM) for 72h and then exposed to xanthine oxidase (XO)/xanthine, a system that generates reactive oxygen species (ROS), for another 24h. We observed that LA pretreatment of H9C2 cells led to a marked protection against XO/xanthine-mediated cytotoxicity, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. The cytoprotective effects also exhibited a LA concentration-dependent fashion. Moreover, the LA pretreatment resulted in a great inhibition of intracellular accumulation of ROS in H9C2 cells following incubation with XO/xanthine. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants and phase 2 enzymes in cultured cardiomyocytes can be induced by LA at low micromolar concentrations, and that the LA-mediated elevation of cellular defenses is accompanied by a markedly increased resistance to ROS-elicited cardiac cell injury. The results of this study have important implications for the cardioprotective effects of LA.  相似文献   

3.
The recognition of the critical involvement of oxidative and electrophilic stress in cardiac disorders has led to extensive investigation of the protective effects of exogenous antioxidants on cardiac injury. On the other hand, another strategy for protecting against oxidative/electrophilic cardiac injury may be through induction of the endogenous antioxidants and phase 2 enzymes in myocardium by chemical inducers. However, our understanding of the chemical inducibility of cardiac antioxidants/phase 2 enzymes in vivo is very limited. In addition, careful studies on the basal levels of a scope of endogenous antioxidants/phase 2 enzymes in myocardium as compared with other tissues, such as liver, are lacking. Accordingly, this study was undertaken to determine the basal levels of endogenous antioxidants/phase 2 enzymes, including superoxide dismutase (SOD), catalase, reduced glutathione (GSH), GSH peroxidase (GPx), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), and investigate the inducibility of the above antioxidants/phase 2 enzymes by the chemoprotectant, 1,2-dithiole-3-thione (D3T), in cardiac as well as hepatic tissues in C57BL/6 mice. Our results demonstrated that in C57BL/6 mice, the levels of catalase, GSH, GPx, GR, and GST were significantly lower in cardiac tissue than in hepatic tissue. The level of total SOD did not differ significantly between mouse heart and liver. Notably, heart contained a much higher NQO1 activity than liver. Immunoblotting and RT-PCR analyses further demonstrated the high expression of NQO1 protein and mRNA in myocardium. Oral administration of D3T at 0.25 and 0.5 mmol/kg body weight for 3 consecutive days resulted in a significant induction of cardiac SOD, catalase, GR, GST, and NQO1. No significant induction of cardiac GSH and GPx was observed with the above D3T treatment. Only GR, GST, and NQO1 in mouse liver were induced by the D3T treatment. Unexpectedly, we observed a significant D3T dose-dependent decrease in hepatic GPx activity. Taken together, this study demonstrates for the first time that: (1) the expression of NQO1 is remarkably high in mouse myocardium though other cardiac antioxidants/phase 2 enzymes are relatively lower as compared with liver; (2) a number of endogenous antioxidants/phase 2 enzymes in mouse cardiac tissue can be significantly induced by D3T following oral administration; and (3) the inducibility of endogenous antioxidants/phase 2 enzymes by D3T differs between mouse cardiac and hepatic tissues. This study provides a basis for future investigation of the cardioprotection of chemically induced endogenous antioxidants and phase 2 enzymes in myocardium in animal models of oxidative/electrophilic cardiac disorders.  相似文献   

4.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

5.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

6.
4-hydroxy-2-nonenal (HNE) plays an important role in the pathogenesis of cardiac disorders. While conjugation with glutathione (GSH) catalyzed by GSH S-transferase (GST) has been suggested to be a major detoxification mechanism for HNE in target cells, whether chemically upregulated cellular GSH and GST afford protection against HNE toxicity in cardiac cells has not been investigated. In addition, the differential roles of chemically induced GSH and GST as well as other cellular factors in detoxifying HNE in cardiomyocytes are unclear. In this study, we have characterized the induction of GSH and GST by 3H-1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-elevated cellular defenses on HNE-mediated toxicity in rat H9C2 cardiomyocytes. Treatment of cardiomyocytes with D3T resulted in a significant induction of both GSH and GST as well as the mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and GSTA. Both GSH and GST remained elevated for at least 72 h after removal of D3T from the culture media. Treatment of cells with HNE led to a significant decrease in cell viability and an increased formation of HNE-protein adducts. Pretreatment of cells with D3T dramatically protected against HNE-mediated cytotoxicity and protein-adduct formation. HNE treatment caused a significant decrease in cellular GSH level, which preceded the loss of cell viability. Either depletion of cellular GSH by buthionine sulfoximine (BSO) or inhibition of GST by sulfasalazine markedly sensitized the cells to HNE toxicity. Co-treatment of cardiomyocytes with BSO was found to completely block the D3T-mediated GSH elevation, which however failed to reverse the cytoprotective effects of D3T, suggesting that other cellular factor(s) might be involved in D3T cytotprotection. In this regard, D3T was shown to induce cellular aldose reductase (AR). Surprisingly, inhibition of AR by sorbinil failed to potentiate HNE toxicity in cardiomyocytes. In contrast, sorbinil dramatically augmented HNE cytotoxicity in cells with GSH depletion induced by BSO. Similarly, in BSO-treated cells, D3T cytoprotection was also largely reversed by sorbinil, indicating that AR played a significant role in detoxifying HNE only under the condition of GSH depletion in cardiomyocytes. Taken together, this study demonstrates that D3T can induce GSH, GST, and AR in cardiomyocytes, and that the above cellular factors appear to play differential roles in detoxification of HNE in cardiomyocytes.  相似文献   

7.
In view of the crucial involvement of oxidative and electrophilic stress in various kidney disorders, this study was undertaken to test the hypothesis that pharmacologically-mediated coordinated upregulation of endogenous renal antioxidants and phase 2 enzymes is an effective strategy for renal protection. Notably, studies on the pharmacological inducibility of a series of antioxidants and phase 2 enzymes in renal tubular cells are lacking. Here we reported that incubation of normal rat kidney (NRK-52E) proximal tubular cells with low micromolar concentrations (10-50 microM) of the cruciferous nutraceutical, 1,2-dithiole-3-thione (D3T), led to a significant concentration-dependent induction of a wide spectrum of antioxidants and phase 2 enzymes, including catalase (CAT), reduced form of glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and heme oxygenase (HO). We further observed that D3T treatment also increased the protein and mRNA expression for CAT, gamma-glutamylcysteine ligase, GR, GST-A, GST-M, NQO1, and HO-1. Incubation of the renal tubular cells with H(2)O(2), SIN-1-derived peroxynitrite, or 4-hydroxy-2-nonenal led to concentration-dependent decreases in cell viability. Pretreatment of the renal tubular cells with 10-50 microM D3T afforded remarkable protection against the nephrocytotoxicity elicited by the above oxidative and electrophilic species. The D3T-mediated cytoprotection showed a concentration-dependent relationship. Taken together, this study for the first time comprehensively characterized the inducibility by a unique nutraceutical of a wide spectrum of antioxidative and phase 2 defenses in renal tubular cells at the levels of enzyme activity as well as protein and mRNA expression, and demonstrated that such a coordinated upregulation of cellular defenses led to remarkable protection of renal tubular cell from oxidative and electrophilic stress. Because of the crucial role of oxidative and electrophilic stress in inflammatory injury, D3T-mediated coordinated induction of endogenous antioxidative and phase 2 defenses may also serve as an important anti-inflammatory mechanism in kidneys.  相似文献   

8.
Zhu H  Itoh K  Yamamoto M  Zweier JL  Li Y 《FEBS letters》2005,579(14):3029-3036
Understanding the molecular pathway(s) of antioxidant gene regulation is of crucial importance for developing antioxidant-inducing agents for the intervention of oxidative cardiac disorders. Accordingly, this study was undertaken to determine the role of Nrf2 signaling in the basal expression as well as the chemical inducibility of endogenous antioxidants and phase 2 enzymes in cardiac fibroblasts. The basal expression of a scope of key cellular antioxidants and phase 2 enzymes was significantly lower in cardiac fibroblasts derived from Nrf2-/- mice than those from wild type control. These include catalase, reduced glutathione (GSH), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). Incubation of Nrf2+/+ cardiac fibroblasts with 3H-1,2-dithiole-3-thione (D3T) led to a significant induction of superoxide dismutase (SOD), catalase, GSH, GR, glutathione peroxidase (GPx), GST, and NQO1. The inducibility of SOD, catalase, GSH, GR, GST, and NQO1, but not GPx by D3T was completely abolished in Nrf2-/- cells. The Nrf2-/- cardiac fibroblasts were much more sensitive to reactive oxygen and nitrogen species-mediated cytotoxicity. Upregulation of antioxidants and phase 2 enzymes by D3T in Nrf2+/+ cardiac fibroblasts resulted in a dramatically increased resistance to the above species-induced cytotoxicity. In contrast, D3T-treatment of the Nrf2-/- cells only provided a slight cytoprotection. Taken together, this study demonstrates for the first time that Nrf2 is critically involved in the regulation of the basal expression and chemical induction of a number of antioxidants and phase 2 enzymes in cardiac fibroblasts, and is an important factor in controlling cardiac cellular susceptibility to reactive oxygen and nitrogen species-induced cytotoxicity.  相似文献   

9.
This study was undertaken to determine if 4-hydroxy-2-nonenal (HNE) could upregulate antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells, and if the upregulated defenses led to cytoprotection against oxidative and electrophilic injury. Incubation of H9c2 cells with HNE at noncytotoxic concentrations resulted in significant induction of cellular catalase, glutathione (GSH), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), as determined by enzyme activity and/or protein expression. HNE treatment caused increased mRNA expression of catalase, γ-glutamylcysteine ligase, GST-A1, and NQO1. Pretreatment of H9c2 cells with HNE led to significant protection against cytotoxicity induced by reactive oxygen and nitrogen species. HNE-pretreated cells also exhibited increased resistance to injury elicited by subsequent cytotoxic concentrations of HNE. Taken together, this study demonstrates that several antioxidants and phase 2 enzymes in H9c2 cells are upregulated by HNE and that the increased defenses afford protection against overt oxidative and electrophilic cardiac cell injury.  相似文献   

10.
Prostaglandin A2 (PGA2) stimulates the biosynthesis of gamma-glutamylcysteine synthetase and elevates glutathione (GSH) contents in cultured mammalian cells. To clarify the importance of gamma-glutamylcysteine synthetase induction in the defence of endothelial cells against oxidative stress, the effect of PGA2 on menadione (2-methyl-1,4-naphthoquinone)-induced cell injury was examined. Incubation of porcine aorta endothelial cells with menadione produced marked loss of cellular GSH and protein sulfhydryl groups, followed by leakage of lactic dehydrogenase (LDH) into the culture medium. The LDH leakage and modification of protein thiol was, however, completely prevented by pretreatment of the cells with PGA2. The protective effect of PGA2 was more potent than that of cysteine delivery agents such as methionine, N-acetylcysteine or 2-oxo-4-thiazolidine carboxylic acid (OTC). The results suggest that cellular GSH plays an important role in the defence against oxidative stress, and induction of gamma-glutamylcysteine synthetase is effective for protecting vascular endothelial cells.  相似文献   

11.
Macrophages play important roles in immunity and other physiological processes. They are also target cells of various toxic agents, including oxidants and electrophiles. However, little is known regarding the molecular regulation and chemical inducibility of a spectrum of endogenous antioxidants and phase 2 enzymes in normal macrophages. Understanding the molecular pathway(s) controlling the coordinated expression of various macrophage antioxidants and phase 2 defenses is of importance for developing strategies to protect against macrophage injury induced by oxidants and electrophiles. Accordingly, this study was undertaken to determine the role of the nuclear factor E2-related factor 2 (Nrf2) in regulating both constitutive and chemoprotectant-inducible expression of various antioxidants and phase 2 enzymes in mouse macrophages. The constitutive expression of a series of antioxidants and phase 2 enzymes was significantly lower in macrophages derived from Nrf2-null (Nrf2(-/-)) mice than those from wild-type (Nrf2(+/+)) littermates. Incubation of wild-type macrophages with 3H-1,2-dithiole-3-thione (D3T) led to significant induction of various antioxidants and phase 2 enzymes, including catalase, glutathione, glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase 1. The inducibility of the above cellular defenses except for GPx by D3T was completely abolished in Nrf2(-/-) macrophages. As compared with wild-type cells, Nrf2(- /-) macrophages were much more susceptible to cell injury induced by reactive oxygen/nitrogen species, as well as two known macrophage toxins, acrolein and cadmium. Up-regulation of the antioxidants and phase 2 enzymes by D3T in wild-type macrophages resulted in increased resistance to the above oxidant-and electrophile-induced cell injury, whereas D3T treatment of Nrf2(- /-) macrophages provided only marginal or no cytoprotec-tion. This study demonstrates that Nrf2 is an indispensable factor in controlling both constitutive and inducible expression of a wide spectrum of antioxidants and phase 2 enzymes in macrophages as well as the susceptibility of these cells to oxidative and electrophilic stress.  相似文献   

12.
Substantial evidence suggests that peroxynitrite generated from the bi-radical reaction of nitric oxide and superoxide is critically involved in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Reaction with sulfhydryl (SH)-containing molecules has been proposed to be a major detoxification pathway of peroxynitrite in biological systems. This study was undertaken to determine if chemically elevated intracellular reduced glutathione (GSH), a major SH-containing biomolecule, affords protection against peroxynitrite-mediated toxicity in cultured neuronal cells. Incubation of human neuroblastoma SH-SY5Y cells with the unique chemoprotectant, 3H-1,2-dithiole-3-thione (D3T), led to a significant elevation of cellular GSH in a concentration-dependent fashion. To examine the protective effects of D3T-induced GSH on peroxynitrite-mediated toxicity, SH-SY5Y cells were pretreated with D3T and then exposed to either the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), or the authentic peroxynitrite. We observed that D3T-pretreated cells showed a markedly increased resistance to SIN-1- or authentic peroxynitrite-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Conversely, depletion of cellular GSH by buthionine sulfoximine (BSO) caused a marked potentiation of SIN-1- or authentic peroxynitrite-mediated cytotoxicity. To further demonstrate the causal role for GSH induction in D3T-mediated cytoprotection, SH-SY5Y cells were co-treated with BSO to abolish D3T-induced GSH elevation. Co-treatment of the cells with BSO was found to significantly reverse the protective effects of D3T on SIN-1- or authentic peroxynitrite-elicited cytotoxicity. Taken together, this study demonstrates for the first time that D3T can induce GSH in cultured SH-SY5Y cells, and that the D3T-augmented cellular GSH defense affords a marked protection against peroxynitrite-induced toxicity in cultured human neuronal cells.  相似文献   

13.
Cellular Antioxidant Properties of Human Natural Killer Enhancing Factor B   总被引:1,自引:0,他引:1  
The protein, NKEF (natural killer enhancing factor), has been identified as a member of an antioxidant family of proteins capable of protecting against protein oxidation in cell-free assay systems. The mechanism of action for this family of proteins appears to involve scavenging or suppressing formation of protein thiyl radicals. In the present study we investigated the antioxidant protective properties of the NKEF-B protein overexpressed in an endothelial cell line (ECV304). Nkef-B-transfected cells displayed significantly lower levels of reactive oxygen species (ROS) compared with control or vector-transfected cells. Tert-Butylhydroperoxide-induced ROS was 15% lower in nkef-8-transfected cells and cytotoxicity was slightly, though not significantly, lower. NKEF-B had no effect on ROS induced by menadione or xanthine plus xanthine oxidase. NKEF-B overexpression resulted in slightly (≈ 10%) lower levels of cellular glutathione (GSH) and had no effect on rate or extent of GSH depletion following either diethylmaleate (DEM) or buthionine sulfoximine (BSO) treatment. Lipid peroxidation, assessed as thiobarbituric acid-reactive substances, was 40% lower in nkef-B-transfected cells compared with vector-only-transfected cells. DEM-induced lipid peroxidation was suppressed by NKEF-B at DEM concentrations of 20 μM to 1 mM. At 10 mM DEM, lipid peroxidation was unaffected by NKEF-B. NKEF-B expression also protected cells against menadione-induced inhibition of [3H]-thymidine uptake. The NKEF-B protein appears most effective in suppressing basal low-level oxidative injury such as that produced during normal metabolism. These results indicate that overexpression of the NKEF-B protein promotes resistance to oxidative stress in this endothelial cell line.  相似文献   

14.
Oxidative stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS)-2 have been shown in the pathogenesis of liver ischemia–reperfusion (IR) injury. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression therefore this study determined the role of selective N-SMase inhibition on nitrative and oxidative stress markers following liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Nitrative and oxidative stress markers were determined by evaluating NOS2 expression, protein nitration, nitrite/nitrate levels, 4-hydroxynonenal (HNE) formation, protein carbonyl levels and xanthine oxidase/xanthine dehydrogenase (XO/XDH) activity. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared to controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. NOS2 expression, nitrite/nitrate levels and protein nitration were significantly greater in IR injury and decreased with N-SMase inhibition. Treatment with a selective N-SMase inhibitor significantly decreased HNE formation, protein carbonyl levels and the hepatic conversion of XO. Data confirm the role of nitrative and oxidative injury in IR and highlight the protective effect of selective N-SMase inhibition. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate oxidative injury in liver I/R injury.  相似文献   

15.
Oxidative stress may regulate cellular function in multiple pathological conditions, including atherosclerosis. One feature of the atherosclerotic plaque is calcium mineral deposition, which appears to result from the differentiation of vascular osteoblastic cells, calcifying vascular cells (CVC). To determine the role of oxidative stress in regulating the activity of CVC, we treated these cells with hydrogen peroxide (H(2)O(2)) or xanthine/xanthine oxidase (XXO) and assessed their effects on intracellular oxidative stress, differentiation, and mineralization. These agents increased intracellular oxidative stress as determined by 2,7 dichlorofluorescein fluorescence, and enhanced osteoblastic differentiation of vascular cells, based on alkaline phosphatase activity and mineralization. In contrast, H(2)O(2) and XXO resulted in inhibition of differentiation markers in bone osteoblastic cells, MC3T3-E1, and marrow stromal cells, M2-10B4, while increasing oxidative stress. In addition, minimally oxidized low-density lipoprotein (MM-LDL), previously shown to enhance vascular cell and inhibit bone cell differentiation, also increased intracellular oxidative stress in the three cell types. These effects of XXO and MM-LDL were counteracted by the antioxidants Trolox and pyrrolidinedithiocarbamate. These results suggest that oxidative stress modulates differentiation of vascular and bone cells oppositely, which may explain the parallel buildup and loss of calcification, seen in vascular calcification and osteoporosis, respectively.  相似文献   

16.
Alpha-lipoic acid (LA) has recently been reported to afford protective effects in neurodegenerative disorders. However, the mechanisms underlying LA-mediated neuroprotection remain to be investigated. This study was undertaken to determine whether LA treatment could increase endogenous antioxidants and phase 2 enzymes in cultured human neuroblastoma SH-SY5Y cells, and whether such increased cellular defenses could afford protection against cytotoxicity induced by neurotoxicants. Incubation of SH-SY5Y cells with micromolar concentrations of LA for 24 h resulted in a significant increase in the levels of reduced glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQQ1) in a concentration-dependent fashion. Treatment of the cells with LA also led to an increased mRNA expression of γ-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. To determine the protective effects of the LA-induced cellular defenses on neurotoxicant-elicitedl cell injury, SH-SY5Y cells were pretreated with LA for 24 h and then exposed to acrolein, 4-hydroxy-2-nonenal (HNE), H2O2 and the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1). We observed that LA pretreatment of SH-SY5Y cells led to a marked protection against acrolein, HNE, H2O2 and SIN-1-mediated cytotoxicity, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Taken together, this study demonstrates for the first time that LA can induce GSH and NQO1 in cultured human neuroblastoma cells and LA-upregulated cellular defenses are accompanied by a markedly increased resistance to cytotoxicity induced by various neurotoxicants. The results of this study may have important implications for the neuroprotective effects of LA.  相似文献   

17.
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.  相似文献   

18.
Oxidative stress, caused by the over production of reactive oxygen species (ROS), has been shown to contribute to cell damage associated with neurotrauma and neurodegenerative diseases. ROS mediates cell damage either through direct oxidation of lipids, proteins and DNA or by acting as signaling molecules to trigger cellular apoptotic pathways. The 78 kDa glucose-regulated protein (GRP78) is an ER chaperone that has been suggested to protect cells against ROS-induced damage. However, the protective mechanism of GRP78 remains unclear. In this study, we used C6 glioma cells transiently overexpressing GRP78 to investigate the protective effect of GRP78 against oxidative stress (hydrogen peroxide)-induced injury. Our results showed that the overexpression of GRP78 significantly protected cells from ROS-induced cell damage when compared to non-GRP78 overexpressing cells, which was most likely due to GRP78-overexpressing cells having higher levels of glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two antioxidants that protect cells against oxidative stress. Although hydrogen peroxide treatment increased lipid peroxidation in non-GRP78 overexpressing cells, this increase was significantly reduced in GRP78-overexpressing cells. Overall, these results indicate that GRP78 plays an important role in protecting glial cells against oxidative stress via regulating the expression of GSH and NQO1.  相似文献   

19.
《Free radical research》2013,47(2):218-229
Abstract

The omega-6 fatty acid derivative 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is believed to play a role in cellular protection against oxidative stress in diverse cell systems. However, the cellular mechanisms by which protection is afforded by 15d-PGJ2 are not fully elucidated in vascular smooth muscle cells (VSMCs). In this study, we report the finding that 15d-PGJ2 elicited a time and concentration- dependent increase in aldose reductase (AR) expression. This induction was independent of the activation of peroxisome proliferator- activated receptor γ. Inhibition of phosphatidylinositol 3-kinase (PI3K) significantly suppressed the increase in expression and promoter activity of AR induced by 15d-PGJ2. Luciferase reporter assays demonstrated that 15d-PGJ2 targets the multiple stress response regions comprising the antioxidant response element in the promoter of the AR gene. 15d-PGJ2-mediated induction of AR promoter activity was potentiated in the presence of nuclear factor-erythroid 2-related factor 2 (Nrf2), but not in cells expressing dominant negative Nrf2. Cells treated with 15d-PGJ2 were resistant to oxidant-induced apoptotic cell death by inhibiting production of reactive oxygen species. These effects were significantly attenuated in the presence of an AR inhibitor or small interfering RNA against AR, indicating that AR plays a protective role against oxidative injury. Taken together, these findings demonstrate that activation of PI3K by 15d-PGJ2 increases the expression of AR through Nrf2, and increased AR activity may function as an important cellular response against oxidative injury.  相似文献   

20.
Accumulating evidence that administration of S-adenosylmethionine (SAMe) protects hepatocytes against oxidative stress-mediated injury led us to evaluate the effect of SAMe on hepatocyte injury induced in culture by oxidant substance tert-butylhydroperoxide (1.5 mM tBHP) with regard to prevent mitochondrial injury. The pretreatment of hepatocyte culture with SAMe in doses of 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50 mg/l for 30 min prevented the release of LDH from cells incubated for 30 min with tBHP in a dose dependent manner. The inhibitory effect of SAMe on lipid peroxidation paralleled the effect on cell viability. SAMe also moderated the decrease of the mitochondrial membrane potential induced by tBHP. Our results indicate that the inhibition of lipid peroxidation by SAMe can contribute to the prevention of disruption of both cellular and mitochondrial membranes. While the protective effect of SAMe against tBHP-induced GSH depletion was not confirmed, probably the most potent effect of SAMe on membranes by phospholipid methylation should be verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号