首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied the cell-type-specific and temporal expression of c-fos and c-jun protooncogenes after 17beta-estradiol (E2) stimulation in the uteri of immature 3-week-old mice neonatally exposed to diethylstilbestrol (DES), DES-mice, and the ontogenic expression of these genes in the uteri of DES-mice using immunohistochemistry and in situ hybridization. A single E2 injection induced the transient and rapid expression of c-fos mRNA and c-Fos protein in the endometrial epithelium and endothelial cells of the blood vessels in both 3-week-old vehicle-treated controls and DES-mice; a peak of mRNA expression was 2 hours after E2 injection and that of protein expression was 2 to 3 hours after the injection. The expression of c-fos mRNA and protein after E2 stimulation was lower in the DES-mice than in the control animals. There were no significant differences in the c-jun expression patterns in both experimental groups before and after the E2 injection. The E2 injection transiently down-regulated the c-jun expression in the epithelium and up-regulated it in the stroma and myometrium. The uterine epithelium of DES-mice showed much stronger c-Jun immunostaining on days 4 and 10, compared with those of controls. Neonatal DES treatment reduced c-Jun immunoreactivity in the uterine epithelium on days 4 and 10, and increased the reaction in the stroma on day 4. These results suggested that the neonatal DES treatment induces permanent changes in the c-fos expression pattern independent of the postpuberal secretion of ovarian steroids. The changes in the expression of c-fos and c-jun protooncogenes, particularly during postnatal development, are likely to play important roles in the production of uterine abnormalities in the DES-mice.  相似文献   

3.
4.
5.
In rodent uterus, both up- and down-regulation of estrogen receptor alpha (ERalpha) messenger ribonucleic acid (mRNA) and protein levels by estradiol has been demonstrated; however, it is not known which of the uterine compartments (endometrial epithelium, stroma, myometrium) respond to estradiol with autoregulation of ERalpha. The purpose of the present study was to investigate and compare the kinetics and cell type-specific effects of estradiol on uterine ERalpha expression in immature and adult rats. Ovariectomized female rats were injected s.c. with sesame oil or estradiol-17beta. Uteri were collected and analyzed for changes in ERalpha mRNA using RNase protection assays (RPA) and in situ hybridization using radiolabeled probes specific for ERalpha. Immunohistochemical analysis was performed with a polyclonal antibody specific to ERalpha. Expression of ERalpha in the uterine epithelial cells decreased at 3 and 6 h after estradiol administration to immature and adult rats, respectively. At 24 h, ERalpha mRNA levels in the immature and mature rat uterus were higher than pretreatment levels but returned to baseline by 72 h. Pretreatment with cycloheximide did not block the 3-h repressive effect of estradiol, suggesting that the estradiol-induced decrease in ERalpha mRNA occurs independent of new protein synthesis. A decrease in ERalpha mRNA and protein was also observed in uterine epithelia at 3 and 6 h after an estradiol injection to immature and adult rats, and intensity of both the in situ hybridization signal and the immunostaining in the epithelium increased at 24 and 72 h. However, the periluminal stromal cells in the adult uterus and the majority of stromal cells of the immature uterus appeared to have increased ERalpha expression. The results indicate that down-regulation of ERalpha in the epithelia and up-regulation of stromal ERalpha play a role in early events associated with estradiol-induced cell proliferation of the uterine epithelia.  相似文献   

6.
Estrogen regulation of c-fos messenger ribonucleic acid   总被引:8,自引:0,他引:8  
Acute administration of 17 beta-estradiol to immature female rats elicits a rapid and striking increase in the size of the uterus. This increase in size to caused by both hypertrophy and hyperplasia in the epithelial, stromal, and myometrial cells in the uterus. Previous studies have shown that induction of mRNA for the epidermal growth factor receptor, the cellular homolog of the erb-B oncogene, occurs early during estrogen-stimulated uterine growth. We report here that estradiol causes a very rapid induction of the mRNA for the cellular oncogene c-fos in immature rat uterus. Steady state levels of c-fos mRNA reach a maximum 3 h after 17 beta-estradiol administration and slowly return to low basal levels in 15 h. Dexamethasone, progesterone, and 5 alpha-dihydrotestosterone had no effect on uterine c-fos mRNA expression. The induction of c-fos mRNA by estrogen was unaffected by the protein synthesis inhibitor puromycin but completely abolished by the RNA synthesis inhibitor actinomycin D.  相似文献   

7.
Estrogen regulation of tissue-specific expression of complement C3   总被引:14,自引:0,他引:14  
The administration of estradiol to immature rats results in the increased synthesis and secretion of a 180-kDa protein, composed of 115- and 65-kDa subunits, by the uterine luminal epithelial cells. A monoclonal antibody against the 180-kDa protein was utilized to isolate the corresponding cDNA (LE-1) from a rat uterine luminal epithelial cell cDNA lambda gt11 expression library. This LE-1 cDNA was sequenced and shown to be homologous to complement component C3. The sequence was approximately 81 and 90% homologous to human and mouse C3, respectively. The LE-1 cDNA sequence was homologous with the 3' portion of the C3 mRNA containing the alpha subunit (115 kDa). Uterine mRNA isolated from immature rats treated with 1 microgram of estradiol for 24 h demonstrated a 25-fold increase in the concentration of a 6.0-kilobase mRNA by Northern hybridization with either LE-1 or authentic human C3 cDNA probes. To further examine the possibility that the estradiol-regulated secretory protein was C3, an aliquot of radiolabeled media protein from control and estradiol-stimulated rat uteri was incubated with goat anti-rat C3 antibody. The immunoprecipitated radiolabeled protein from estradiol-treated animals was increased significantly (p less than 0.01) compared to media from control animals. Analysis of the immunoprecipitated proteins on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein of 180 kDa from estradiol-stimulated uterine media, whereas no detectable proteins were immunoprecipitated from media obtained from control uteri. Also, when the immunoprecipitated protein was reduced (20 mM dithiothreitol) it dissociated into two subunits of 115 and 65 kDa. Immunohistochemical studies demonstrated the presence of C3 only in the epithelial cells of estrogen-stimulated rat uteri. In addition, the estradiol-stimulated mRNA was only detectable in uterine epithelial cell RNA. Analysis of liver RNA demonstrated a 6.0-kilobase mRNA, as in the uterus, when hybridized with LE-1. However, unlike the uterus, its concentration was not influenced by estrogen administration with up to three daily injections of 100 micrograms of diethylstilbestrol. Based on biophysical, DNA sequence, and antibody data we conclude that rat uterine epithelial cells produce C3 in response to estradiol whereas the expression in the liver was not modulated by estrogens.  相似文献   

8.
The uterus of the immature rat synthesizes and secretes complement component C3 in response to estradiol treatment. This response occurs in the uterine epithelial cells and is also stimulated by several antiestrogens including tamoxifen and LY117018. The administration of a new antiestrogen ICI 164,384 blocked the estradiol as well as the antiestrogen-stimulated increases in uterine weight, epithelial cell height, C3 synthesis and C3 mRNA. ICI 164,384 demonstrated no agonist properties in terms of epithelial cell response as determined by C3 expression.  相似文献   

9.
10.
11.
Progestins increase the activity and rate of synthesis of cathepsin D, a lysosomal aspartyl protease, in the uterine luminal epithelium in ovariectomized rats. Western blot analysis of luminal epithelial proteins determined that the progestin, medroxyprogesterone acetate (MPA) increased the 43-kDa form of cathepsin D by 7-fold in 24 hr, whereas estradiol increased the amount of the same form by only 2-fold. To examine the precursor-product relationship between cathepsin D proteins in the luminal epithelium and stroma-myometrium after progestin or estradiol treatment, uterine proteins were prelabeled by incubation with [35S]methionine in vitro, cathepsin D was isolated by immunoprecipitation, and equal amounts of labeled cathepsin D were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After each hormonal treatment in each uterine tissue, a 48-kDa precursor was processed into a 44-kDa cathepsin D product. Endoglycosidase H digestion of [35S]methionine-labeled cathepsin D from the luminal epithelium and stroma-myometrium of medroxyprogesterone-treated rats shifted the molecular masses of the cathepsin D proteins by approximately 5.7 kDa. To examine the contribution of increased mRNA to increased rates of cathepsin D synthesis, we measured levels of cathepsin D mRNA in uterine tissues after progestin and estrogen treatment. Total RNA was isolated from the uterine luminal epithelium and from the stroma-myometrium. Northern blot analysis identified a single 2.2-kb RNA band corresponding to the size expected for cathepsin D mRNA. Medroxyprogesterone increased levels of cathepsin D mRNA in the luminal epithelium (greater than 17-fold) and in the stroma myometrium (3-fold), with maximum increases at 9 hr after treatment. Estradiol also increased cathepsin D mRNA levels in both uterine tissues, but by only 2-fold. No hormonal effects on liver cathepsin D mRNA were observed. Increases in cathepsin D synthesis and activity in uterine tissues in response to progestin and estrogen appear to depend in part upon increased levels of mRNA.  相似文献   

12.
Cytoplasmic beta- and gamma-actin mRNAs as well as smooth muscle actin mRNAs have been shown to be transiently increased in rat uterus after treatment with the steroid hormone estradiol. A clone isolated as an estradiol-induced message from a lambda-gt10 cDNA library prepared from the mRNA of estrogen-stimulated immature rat uterus was identified as alpha-smooth muscle actin. A single-stranded RNA probe composed mainly of the 3'-untranslated region of this clone, as well as DNA probes derived from the 3'-untranslated regions of other actin genes, were used to study the induction kinetics of different actin isoforms in rat uterus after being stimulated by estradiol. The beta- and gamma-cytoskeletal actins showed an induction peak at 4 h after estradiol administration with 1.4- and 1.8-fold increases, respectively. The smooth muscle actin was maximally increased 2.1-fold at 8-12 h. Messages of alpha-skeletal and alpha-cardiac actins were neither expressed nor induced by estradiol in this tissue. The different induction kinetics of the cytoplasmic and smooth muscle actins suggest that they are regulated by different mechanisms and possibly in different cell types of the uterus.  相似文献   

13.
Tissue-specific regulation of rat estrogen receptor mRNAs   总被引:9,自引:0,他引:9  
The estrogen receptor (ER) is present in a wide variety of mammalian tissues and is required for physiological estrogen responses, including estrogen-induced tissue-specific changes in gene expression. We studied the estrogen regulation of the mRNAs encoding the ER in rat uterus, liver, and pituitary. Ovariectomized (21-28 day post surgery) female CD-1 rats were injected daily with 17 beta-estradiol (E2, 10 micrograms/100 g BW) for 0, 1, or 4 h, 1, 3, or 7 days and compared with intact controls. Steady-state levels of ER mRNA were quantified using a human ER cDNA probe. Only one hybridizing species of approximately 6.2 kilobase (kb) was detected in uterine and liver RNA, similar to that observed in MCF7 human breast cancer cells. However, the ER mRNA regulation by E2 differed in direction depending on the tissue examined. In uterus, ER mRNA increased 3- to 6-fold after ovariectomy, and returned to intact levels within 24 h of E2 replacement. In contrast, liver ER mRNA declined 1.5- to 3-fold after ovariectomy and returned to intact levels after 1-3 days of E2. In pituitary tissue two hybridizing forms of ER mRNA were observed, with one species migrating at 6.2 kb, equivalent to the form in other tissues, and a second smaller species at approximately 5.5 kb. The lower molecular weight species varied somewhat in abundance from animal to animal, averaging about 20% of the intensity of the 6.2 kb band. The ER mRNA forms were regulated positively with E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Quantitative and cell-type-specific expression of c-fos and c-jun genes after 17beta-estradiol (E2) stimulation, was investigated in the uteri of neonatally diethylstilbestrol (DES)-exposed and ovariectomized adult mice (neoDES-mice), employing Northern blot analysis, immunohistochemistry and in situ hybridization. The c-fos mRNA level before E2 injection (at baseline) was about 2.2-fold higher in neoDES-mice than in vehicle-treated control mice. In controls, E2 treatment transiently increased c-fos mRNA levels, showing a peak value (15.8-fold relative to the baseline) after 2 hours. In neoDES-mice, c-fos mRNA level reached a peak showing a 2.1-fold increase compared with its baseline value 1 hour after E2 injection. Immunohistochemistry and in situ hybridization revealed that c-fos protein (Fos) and mRNA are induced in the epithelium and vascular endothelium in both groups. Most uterine epithelia of neoDES-mice revealed low sensitivity to the c-fos expression after E2 administration compared with those of vehicle-treated controls, whereas few epithelia showed high c-fos mRNA expression even at baseline. The c-jun mRNA concentration in the neoDES-mice uteri at baseline was 70% of that in vehicle-treated controls. At 1 hour after E2 injection, c-jun mRNA levels increased 1.8-fold in controls and 1.3-fold in the neoDES-mice relative to each baseline value. There were no significant differences in the distribution pattern of c-jun protein (Jun) and mRNA in the uteri of either groups; E2 stimulated c-jun mRNA expression in the stromal and myometrial cells but suppressed it in the epithelial cells, whereas intensity of c-jun immunostaining increased in the three cell types. The permanent changes in the expression of estrogen-regulated protooncogenes, c-fos and c-jun genes, by neonatal DES exposure may be responsible for the wide range of abnormalities in the genital tract of mature animals.  相似文献   

15.
16.
Neurokinin A (NKA), a neuropeptide belonging to the tachykinin family, induced c-fos proto-oncogene mRNA expression in serum-deprived L6J1 rat skeletal myoblasts in vitro. The marked increase reached maximal levels after 15 to 30 min. In contrast to this, c-jun and c-myc proto-oncogene expression were only slightly induced, with peak levels after 30 min. NKA did not stimulate DNA synthesis or cell proliferation in serum-deprived L6J1 myoblasts. We demonstrate a relationship between NKA treatment and induction of c-fos, c-jun and c-myc mRNA expression in serum-deprived L6J1 rat myoblasts. The results on DNA synthesis and cell proliferation indicate that the induced proto-oncogene expression alone is not enough to induce a cellular response to NKA. Possible mechanisms of action are discussed.  相似文献   

17.
18.
19.
The present series of experiments examined the effects of follicle-stimulating hormone (FSH) and insulin (IN) on granulosa cell (GC) proto-oncogene expression and DNA synthesis. In the first study, GCs were harvested from immature rat ovaries after 15, 30, or 60 min of perifusion and DNA synthesis (3H-thymidine incorporation) and proto-oncogene mRNA levels were determined. The presence of c-myc and c-fos proteins was localized within GCs immunocytochemically. GCs of control ovaries exhibited modest levels of DNA synthesis and proto-oncogene expression. FSH/IN not only stimulated DNA synthesis but also increased c-myc, c-fos, and c-jun mRNA levels and the percentage of cells staining for c-fos and c-myc proteins. The protein kinase inhibitor, 2-aminopurine (2-AP), inhibited the FSH/IN-induced increases in c-myc and c-fos mRNA levels, the percentage of cells staining for Myc and Fos protein, and DNA and protein synthesis. The effects of 48 h of perifusion with FSH in the presence or absence of IN were also examined. These treatments were selected because after 48 h of continuous exposure to FSH alone, estradiol-17 beta (E2) secretion is enhanced and 3H-thymidine incorporation is inhibited. Conversely, FSH/IN maintains 3H-thymidine incorporation for up to 48 h of perifusion culture without stimulating E2 (Peluso et al., Endocrinology 1991; 128:191-196). After 48 h of perifusion, both FSH and FSH/IN stimulated c-fos mRNA and protein levels. However, high levels of c-jun mRNA and protein were detected only within GCs of FSH/IN-treated ovaries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The present studies were undertaken to characterize the response of uterine secretory component (SC) to estradiol. Administration of estradiol for 3 days to ovariectomized rats before incubation of uterine tissues resulted in a marked accumulation of SC in the incubation media. When uteri from ovariectomized rats treated with progesterone or testosterone were incubated, very little SC accumulated in the media, indicating that the estradiol-stimulated increase is hormone-specific. When uteri from rats that received estradiol for 6 days were compared with uteri from 3-day treated rats, SC release during a 24-hr incubation period was the same. This finding indicates that in the presence of prolonged estradiol exposure, SC production continues. The estradiol-induced accumulation of SC in culture is not due to the release of pre-formed uterine SC. When tissue SC levels were measured after 3 days of estradiol treatment, very little tissue SC was found relative to that released into culture media during 24 hr of incubation. The addition of actinomycin D to the incubation media markedly inhibited SC release by uteri from estradiol-treated rats. The release of SC was also inhibited by alpha-amanitin, a known inhibitor of Type II polymerase. These studies demonstrate that estradiol stimulation of SC is markedly reduced by inhibitors of RNA synthesis, and suggest that estradiol regulation of SC is mediated through uterine mRNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号