首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:41,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

2.
Molecular organization of the uvomorulin-catenin complex   总被引:37,自引:14,他引:23       下载免费PDF全文
The Ca(2+)-dependent cell adhesion molecule uvomorulin is a member of the cadherin gene family. Its cytoplasmic region complexes with structurally defined proteins termed alpha-, beta-, and gamma-catenins. Here we show that A-CAM (N-cadherin), another member of this gene family, also associates with catenins suggesting that this complex formation may be a general property of the cadherins. For uvomorulin it has been found that this association with catenins is of crucial importance for the adhesive function, but little is known about the molecular organization of the uvomorulin-catenin complex. Using a combination of biochemical analyses we show that a single complex is composed of one molecule of uvomorulin, one or two molecules of beta-catenin, and one molecule of alpha-catenin. Furthermore, beta-catenin seems to interact more directly with uvomorulin. In pulse-chase experiments beta-catenin is already associated with the 135-kD uvomorulin precursor molecule but the assembly of the newly synthesized alpha-catenin into the complex is only detected around the time of endoproteolytic processing.  相似文献   

3.
All Ca2(+)-dependent cell adhesion molecules are synthesized as precursor polypeptides followed by a series of posttranslational modifications including proteolytic cleavage. The mature proteins are formed intracellularly and transported to the cell surface. For uvomorulin the precursor segment is composed of 129-amino acid residues which are cleaved off to generate the 120-kD mature protein. To elucidate the role of proteolytic processing, we constructed cDNAs encoding mutant uvomorulin that could no longer be processed by endogenous proteolytic enzymes and expressed the mutant polypeptides in L cells. Instead of the recognition sites for endogenous proteases, these mutants contained either a recognition site of serum coagulation factor Xa or a new trypsin cleavage site. The intracellular proteolytic processing of mutant polypeptides was inhibited in both cases. The unprocessed polypeptides were efficiently expressed on the cell surface and had other features in common with mature uvomorulin, such as complex formation with catenins and Ca2(+)-dependent resistance to proteolytic degradation. However, cells expressing unprocessed polypeptides showed no uvomorulin-mediated adhesive function. Treatment of the mutant proteins with the respective proteases results in cleavage of the precursor region and the activation of uvomorulin function. However, other proteases although removing the precursor segment were ineffective in activating the adhesive function. These results indicate that correct processing is required for uvomorulin function and emphasize the importance of the amino-terminal region of mature uvomorulin polypeptide in the molecular mechanism of adhesion.  相似文献   

4.
Uvomorulin is a cell-adhesion molecule implicated in the compaction process of mouse preimplantation embryos and the aggregation of embryonal carcinoma cells. A rabbit antiserum against purified uvomorulin also reacts with epithelial cells of various adult tissues. In this study, we investigated the localization of uvomorulin on adult intestinal epithelial cells using electron microscopic analyses. Uvomorulin was shown to exhibit a highly restricted localization in the intermediate junctions of these cells. The results are discussed with respect to a possible adhesive function of uvomorulin on intestinal epithelial cells.  相似文献   

5.
《The Journal of cell biology》1989,108(6):2435-2447
The generation of invasiveness in transformed cells represents an essential step of tumor progression. We show here, first, that nontransformed Madin-Darby canine kidney (MDCK) epithelial cells acquire invasive properties when intercellular adhesion is specifically inhibited by the addition of antibodies against the cell adhesion molecule uvomorulin; the separated cells then invade collagen gels and embryonal heart tissue. Second, MDCK cells transformed with Harvey and Moloney sarcoma viruses are constitutively invasive, and they were found not to express uvomorulin at their cell surface. These data suggest that the loss of adhesive function of uvomorulin (which is identical to E-cadherin and homologous to L-CAM) is a critical step in the promotion of epithelial cells to a more malignant, i.e., invasive, phenotype. Similar modulation of intercellular adhesion might also occur during invasion of carcinoma cells in vivo.  相似文献   

6.
7.
We have examined the synthesis and distribution of the cell adhesion molecule uvomorulin in mouse preimplantation embryos. Uvomorulin can already be detected on the cell surface of unfertilized and fertilized eggs but is not synthesized in these cells. Uvomorulin synthesis starts in late two-cell embryos and seems not to be correlated with the onset of compaction. The first signs of compaction are accompanied by a redistribution of uvomorulin on the surface of blastomeres. During compaction uvomorulin is progressively removed from the apical membrane domains of peripheral blastomeres. In compact morulae uvomorulin is no longer present on the outer surface of the embryo but is localized predominantly in membrane domains involved in cell-cell contacts of adjacent outer blastomeres. On inner blastomeres of compact morulae uvomorulin remains evenly distributed. This uvomorulin distribution once established during compaction is maintained and also found in the blastocyst: on trophectodermal cells uvomorulin localization is very similar to that in adult intestinal epithelial cells while uvomorulin remains evenly distributed on the surface of inner cell mass cells. The possible role of the redistribution of uvomorulin for the generation of trophectoderm and inner cell mass in early mouse embryos is discussed.  相似文献   

8.
M Ozawa  H Baribault    R Kemler 《The EMBO journal》1989,8(6):1711-1717
Uvomorulin belongs to the group of Ca2+-dependent cell adhesion molecules, which are integral membrane proteins with several structural features in common. In particular, the cytoplasmic part of these proteins is highly conserved in different species, suggesting a common biological function. To test this assumption we transfected a uvomorulin full-length cDNA into uvomorulin-negative mouse NIH 3T3 and L cells. Immunoprecipitations with anti-uvomorulin antibodies detected, in addition to uvomorulin, three independent proteins of 102, 88 and 80 kd which are of host origin and which form complexes with uvomorulin. Using cDNA constructs coding for uvomorulin with cytoplasmic or extracellular deletions it is shown that the 102, 88 and 80 kd proteins complex with the cytoplasmic domain of uvomorulin. Peptide pattern analysis revealed that these three proteins are identical in different mouse cells. When uvomorulin cDNA was introduced into cell lines from other species, such as human HeLa and avian fibroblasts, the expressed uvomorulin was also associated with endogenous 102, 88 and 80 kd proteins and, moreover, each of these proteins showed structural similarities to the respective mouse molecule. A panel of antibodies specific for known cytoplasmic proteins of mol. wts similar to those of the three proteins did not react with any of the described components. This suggests that the 102, 88 and 80 kd proteins constitute a new group of proteins for which we propose the nomenclature of catenin alpha, beta and gamma respectively. The characterization of these proteins provides a first molecular basis for a possible cytoplasmic anchorage of uvomorulin to the cytoskeleton.  相似文献   

9.
Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.  相似文献   

10.
We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs.  相似文献   

11.
M Ozawa  J Engel  R Kemler 《Cell》1990,63(5):1033-1038
We show that a synthetic peptide corresponding to the sequence of one putative Ca2+ binding motif of the cell adhesion molecule uvomorulin is able to complex Ca2+. This function is abolished if the first Asp in the peptide is replaced by Lys. Accordingly, we expressed in L cells mutant uvomorulin with a replacement of Asp to Lys or Ala. Mutant protein was resistant to Ca2+/trypsin under mild conditions but became susceptible at or near the site of replacement at higher concentrations, leaving the remaining Ca2+ binding domains protected. Remarkably, in cell aggregation assays both mutant uvomorulins failed to mediate cell adhesiveness, demonstrating that a single amino acid substitution in one Ca2+ binding site inactivates the adhesive function.  相似文献   

12.
13.
Cell-cell contact is an important determinant in the formation of functionally distinct plasma membrane domains during the development of epithelial cell polarity. In cultures of Madin-Darby canine kidney (MDCK) epithelial cells, cell-cell contact induces the assembly and accumulation of the Na+,K+-ATPase and elements of the membrane-cytoskeleton (ankyrin and fodrin) at the regions of cell-cell contact. Epithelial cell-cell contact appears to be regulated by the cell adhesion molecule uvomorulin (E-cadherin) which also becomes localized at the lateral plasma membrane of polarized cells. We have sought to determine whether the colocalization of these proteins reflects direct molecular interactions which may play roles in coordinating cell-cell contact and the assembly of the basal-lateral domain of the plasma membrane. Recently, we identified a complex of proteins containing the Na+,K+-ATPase, ankyrin, and fodrin in extracts of whole MDCK cells (Nelson, W.J., and R. W. Hammerton. 1989. J. Cell Biol. 108:893-902). We have now examined cell extracts for protein complexes containing the cell adhesion molecule uvomorulin. Proteins were solubilized from whole MDCK cells and fractionated in sucrose gradients. The sedimentation profile of solubilized uvomorulin is well separated from the majority of cell surface proteins, suggesting that uvomorulin occurs in a protein complex. A distinct portion of uvomorulin (30%) cosediments with ankyrin and fodrin (approximately 10.5S). Further fractionation of cosedimenting proteins in nondenaturing polyacrylamide gels reveals a discrete band of proteins that binds antibodies specific for uvomorulin, Na+,K+-ATPase, ankyrin, and fodrin. Significantly, ankyrin and fodrin, but not Na+K+-ATPase, coimmunoprecipitate in a complex with uvomorulin using uvomorulin antibodies. This result indicates that separate complexes exist containing ankyrin and fodrin with either uvomorulin or Na+,K+-ATPase. These results are discussed in the context of the possible roles of uvomorulin-induced cell-cell contact in the assembly of the membrane-cytoskeleton and associated membrane proteins (e.g., Na+,K+-ATPase) at the contact zone and in the development of cell polarity.  相似文献   

14.
Recombinant TCRs confer specificity to T cells and trigger their activation. Receptors with Ab-derived binding domains have the advantages of MHC-independent Ag recognition and of targeting a variety of chemically different molecules. We explored the impact of the position of a defined epitope within the target molecule on the efficacy of receptor-mediated T cell activation. T cells were grafted with recombinant immunoreceptors that recognize either the membrane distal N or the proximal A3 domain of carcinoembryonic Ag (CEA). Upon binding to isolated, solid-phase immobilized CEA, receptor-mediated T cell activation correlates with the binding efficiency, irrespectively, of the epitope position. Upon binding to CEA expressed on the cell membrane, in contrast, the A3 epitope mediates more efficiently T cell activation than the N epitope, although the N epitope is bound with higher affinity. The CEA N epitope when expressed in a more membrane proximal position, however, activated receptor grafted T cells with higher efficiency than in the distal position. The position of the targeted epitope within the molecule obviously has major impact on the efficacy of T cell activation independently of the binding efficiency of the immunoreceptor.  相似文献   

15.
Calcium-dependent cell adhesion molecules   总被引:8,自引:0,他引:8  
The adhesive function of Ca2(+)-dependent CAMS has in the past been studied only indirectly, mainly using immunological techniques. The molecular cloning and information about the primary structure of several CAMs has been an important step in a more detailed molecular analysis. If there is a homophilic interaction between CAMs of neighbouring cells, an important question concerns the specificity of each CAM-mediated adhesiveness. Has each CAM a unique specificity and can this specificity be linked to a defined amino acid sequence? It will be important to elucidate the molecular mechanism of how each CAM interacts with the other. The experiments of Volk et al. (1987) suggest that an interaction of two different CAMs can occur. Since during development a given cell can express more than one CAM such an heterophilic interaction could play some regulatory role. Alternative splicing mechanisms or different protein forms during development or on different cell types have not yet been observed for Ca2(+)-dependent CAMs. However, uvomorulin is assumed to have a slightly different function during development and in adult tissues. During development uvomorulin is involved in the condensation, the pattern formation, and the sorting out of cells. In these processes the uvomorulin-mediated adhesiveness should be controlled, since cells reorganize and migrate during development. For the maintenance of the histoarchitecture in adult tissues uvomorulin might act more as a glue. This argues for the existence of mechanisms to regulate the strength of adhesiveness, and the cytoplasmic domain might be involved in these processes. The association of the cytoplasmic domain of uvomorulin with catenins could be an important observation in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Herpes simplex virus (HSV) entry requires the interaction between the envelope glycoprotein D (gD) and a cellular receptor such as nectin-1 (also named herpesvirus entry mediator C [HveC]) or HveA/HVEM. Nectin-1 is a cell adhesion molecule found at adherens junctions associated with the cytoplasmic actin-binding protein afadin. Nectin-1 can act as its own ligand in a homotypic interaction to bridge cells together. We used a cell aggregation assay to map an adhesive functional site on nectin-1 and identify the effects of gD binding and HSV early infection on nectin-1 function. Soluble forms of nectin-1 and anti-nectin-1 monoclonal antibodies were used to map a functional adhesive site within the first immunoglobulin-like domain (V domain) of nectin-1. This domain also contains the gD-binding site, which appeared to overlap the adhesive site. Thus, soluble forms of gD were able to prevent nectin-1-mediated cell aggregation and to disrupt cell clumps in an affinity-dependent manner. HSV also prevented nectin-1-mediated cell aggregation by occupying the receptor. Early in infection, nectin-1 was not downregulated from the cell surface. Rather, detection of nectin-1 changed gradually over a 30-min period of infection, as reflected by a decrease in the CK41 epitope and an increase in the CK35 epitope. The level of detection of virion gD on the cell surface increased within 5 min of infection in a receptor-dependent manner. These observations suggest that cell surface nectin-1 and gD may undergo conformational changes during HSV entry as part of an evolving interaction between the viral envelope and the cell plasma membrane.  相似文献   

18.
Thrombospondin (TSP) contains the Arg-Gly-Asp (RGD) sequence that is thought to be important for cell adhesion mediated by several cell-surface integrin receptors. The RGD sequence is located in the type 3 repeat region of TSP that has multiple Ca2+ binding sites and is subject to a complex intramolecular thiol-disulfide isomerization. TSP that we isolated from thrombin-activated human platelets using buffers containing 0.1 mM Ca2+, in which Cys974 is the major labeled cysteine, did not have RGD-inhibitable adhesive activity. However, one of our preparations of TSP and TSP purified following alternative procedures using greater than or equal to 0.3 mM Ca2+ did have RGD-inhibitable adhesive activity. Reduction of TSP with DTT, either before or after adsorption to surfaces, enhanced its adhesive activity. Reduced TSP supported robust cell spreading when coated at concentrations as low as 1 micrograms/ml, whereas "adhesive" TSP not treated with DTT was active at coating concentration of greater than 20 micrograms/ml and supported only modest cell spreading. Lower DTT concentrations were required for enhancement of the adhesive activity of TSP if Ca2+ was chelated with EDTA. Cellular adhesion to DTT-treated TSP was inhibited by RGD-containing peptide and by mAb to a functional site of the alpha v beta 3 integrin. Cell blots of reduced proteolytic fragments of TSP localized the adhesive activity to the RGD-containing type 3 repeat region. These results suggest a novel mechanism for regulation of integrin-ligand interactions in which the ligand can isomerize between inactive and active forms.  相似文献   

19.
Compaction of the eight-cell stage mouse embryo is a critical event in the generation of different cell types within the preimplantation embryo. Uvomorulin, a member of the cadherin family of cell adhesion molecules, is important during compaction and its phosphorylation increases early in the eight-cell stage, suggesting that this posttranslational modification may be important for compaction to proceed. We have assessed the importance of the phosphorylation of uvomorulin during compaction by preventing, reversing, or inducing adhesion prematurely. The only condition that affected the overall level of uvomorulin phosphorylation was the prevention of compaction through prolonged exposure of four-cell embryos to low Ca2−. This treatment reduced the level of uvomorulin phosphorylation in eight-cell embryos, and perturbed its localization to regions of cell-cell contact. Thus, whilst the phosphorylation of uvomorulin does not appear to regulate directly uvomorulin's adhesive function, it may be associated with the redistribution of uvomorulin during compaction. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The Leukocytic cell-adhesion molecule (beta 2 integrin) family of adhesion molecules play a key role in the intercellular adhesive interactions necessary for normal immune cell function. In this study, we report an antibody that recognizes an epitope on the Leukocytic cell-adhesion molecule common beta-chain (CD18) and promotes both lymphocyte function-associated Ag-1- and CR3-dependent adhesion events. The antibody recognizes a temperature-sensitive epitope that is not dependent on the presence of divalent cations. It is proposed that antibody binding promotes a conformational change in both lymphocyte function-associated Ag-1 and CR3, which may mimic a natural activation mechanism, resulting in increased cellular adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号