首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Green fluorescent protein from the jellyfish (Aequorea GFP) and GFP-like proteins from coral species encode light-absorbing chromophores within their protein sequences. A coral fluorescent protein, Kaede, contains a tripeptide, His(62)-Tyr(63)-Gly(64), which acts as a green chromophore that is photoconverted to red. Here, we present the structural basis for the green-to-red photoconversion. As in Aequorea GFP, a chromophore, 4-(p-hydroxybenzylidene)-5-imidazolinone, derived from the tripeptide mediates green fluorescence in Kaede. UV irradiation causes an unconventional cleavage within Kaede protein between the amide nitrogen and the alpha carbon (Calpha) at His(62) via a formal beta-elimination reaction, which requires the whole, intact protein for its catalysis. The subsequent formation of a double bond between His(62)-Calpha and -Cbeta extends the pi-conjugation to the imidazole ring of His(62), creating a new red-emitting chromophore, 2-[(1E)-2-(5-imidazolyl)ethenyl]-4-(p-hydroxybenzylidene)-5-imidazolinone. The present study not only reveals diversity in the chemical structure of fluorescent proteins but also adds a new dimension to posttranslational modification mechanisms.  相似文献   

2.
Fluorescent proteins are now widely used in fluorescence microscopy as genetic tags to any protein of interest. Recently, a new fluorescent protein, Kaede, was introduced, which exhibits an irreversible color shift from green to red fluorescence after photoactivation with lambda = 350-410 nm and, thus, allows for specific cellular tracking of proteins before and after exposure to the illumination light. In this work, the dynamics of this photoconversion reaction of Kaede are studied by fluorescence techniques based on single-molecule spectroscopy. By fluorescence correlation spectroscopy, fast flickering dynamics of the chromophore group were revealed. Although these dynamics on a submillisecond timescale were found to be dependent on pH for the green fluorescent Kaede chromophore, the flickering timescale of the photoconverted red chromophore was constant over a large pH range but varied with intensity of the 488-nm excitation light. These findings suggest a comprehensive reorganization of the chromophore and its close environment caused by the photoconversion reaction. To study the photoconversion in more detail, we introduced a novel experimental arrangement to perform continuous flow experiments on a single-molecule scale in a microfluidic channel. Here, the reaction in the flowing sample was induced by the focused light of a diode laser (lambda = 405 nm). Original and photoconverted Kaede protein were differentiated by subsequent excitation at lambda = 488 nm. By variation of flow rate and intensity of the initiating laser we found a reaction rate of 38.6 s(-1) for the complete photoconversion, which is much slower than the internal dynamics of the chromophores. No fluorescent intermediate states could be revealed.  相似文献   

3.
Kaede is a natural photoconvertible fluorescent protein found in the coral Trachyphyllia geoffroyi. It contains a tripeptide, His 62-Tyr 63-Gly 64, which acts as a green chromophore that is photoconvertible to red following (ultra-) violet irradiation. Here, we report the molecular cloning and crystal structure determination of a new fluorescent protein, KikG, from the coral Favia favus, and its in vitro evolution conferring green-to-red photoconvertibility. Substitution of the His 62-Tyr 63-Gly 64 sequence into the native protein provided only negligible photoconversion. On the basis of the crystal structure, semi-rational mutagenesis of the amino acids surrounding the chromophore was performed, leading to the generation of an efficient highlighter, KikGR. Within mammalian cells, KikGR is more efficiently photoconverted and is several-fold brighter in both the green and red states than Kaede. In addition, KikGR was successfully photoconverted using two-photon excitation microscopy at 760 nm, ensuring optical cell labelling with better spatial discrimination in thick and highly scattering tissues.  相似文献   

4.
A green fluorescent protein from the coral Dendronephthya sp. (Dend FP) is characterized by an irreversible light-dependent conversion to a red-emitting form. The molecular basis of this phenomenon was studied in the present work. Upon UV-irradiation at 366 nm, the absorption maximum of the protein shifted from 494 nm (the green form) to 557 nm (the red form). Concurrently, in the fluorescence spectra the emission maximum shifted from 508 to 575 nm. The green form of native Dend FP was shown to be a dimer, and the oligomerization state of the protein did not change during its conversion to the red form. By contrast, UV-irradiation caused significant intramolecular changes. Unlike the green form, which migrates in SDS-polyacrylamide gels as a single band corresponding to a full-length 28-kD protein, the red form of Dend FP migrated as two fragments of 18- and 10-kD. To determine the chemical basis of these events, the denatured red form of Dend FP was subjected to proteolysis with trypsin. From the resulting hydrolyzate, a chromophore-containing peptide was isolated by HPLC. The structure of the chromophore from the Dend FP red form was established by methods of ESI, tandem mass spectrometry (ESI/MS/MS), and NMR-spectroscopy. The findings suggest that the light-dependent conversion of Dend FP is caused by generation of an additional double bond in the side chain of His65 and a resulting extension of the conjugated system of the green form chromophore. Thus, classified by the chromophore structure, Dend FP should be referred to the Kaede subfamily of GFP-like proteins.  相似文献   

5.
Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light‐induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse–chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi, which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl‐transferase (ST‐Kaede) and of the vacuolar pathway marker cardosin A (cardA‐Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede‐based imaging protocols. Photoconverted ST‐Kaede red‐labelled organelles can be followed within neighbouring populations of non‐converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio‐imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.  相似文献   

6.
A simple and efficient procedure for labeling neurons is a prerequisite for investigating the development of neural networks in zebrafish. To label neurons we used Kaede, a fluorescent protein with a photoconversion property allowing conversion from green to red fluorescence following irradiation with UV or violet light. We established a zebrafish stable transgenic line, Tg(HuC:Kaede), expressing Kaede in neurons under the control of the HuC promoter. This transgenic line was used to label a small number of neurons in the trigeminal ganglion. Also, using embryos injected with the transgene, we labeled peripheral axon arbors of a Rohon-Beard neuron at 4 days postfertilization and observed the dendrite development of a tectal neuron for 3 days. These data indicate that Kaede is a useful tool to selectively label neural networks in zebrafish.  相似文献   

7.
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π–π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60–67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.  相似文献   

8.
Tubbs JL  Tainer JA  Getzoff ED 《Biochemistry》2005,44(29):9833-9840
The mature self-synthesizing p-hydroxybenzylideneimidazolinone-like fluorophores of Discosoma red fluorescent protein (DsRed) and Aequorea victoria green fluorescent protein (GFP) are extensively studied as powerful biological markers. Yet, the spontaneous formation of these fluorophores by cyclization, oxidation, and dehydration reactions of tripeptides within their protein environment remains incompletely understood. The mature DsRed fluorophore (Gln 66, Tyr 67, and Gly 68) differs from the GFP fluorophore by an acylimine that results in Gln 66 Calpha planar geometry and by a Phe 65-Gln 66 cis peptide bond. DsRed green-to-red maturation includes a green-fluorescing immature chromophore and requires a chromophore peptide bond trans-cis isomerization that is slow and incomplete. To clarify the unique structural chemistry for the individual immature "green" and mature "red" chromophores of DsRed, we report here the determination and analysis of crystal structures for the wild-type protein (1.4 A resolution), the entirely green DsRed K70M mutant protein (1.9 A resolution), and the DsRed designed mutant Q66M (1.9 A resolution), which shows increased red chromophore relative to the wild-type DsRed. Whereas the mature, red-fluorescing chromophore has the expected cis peptide bond and a sp(2)-hybridized Gln 66 Calpha with planar geometry, the crystal structure of the immature green-fluorescing chromophore of DsRed, presented here for the first time, reveals a trans peptide bond and a sp(3)-hybridized Gln 66 Calpha with tetrahedral geometry. These results characterize a GFP-like immature green DsRed chromophore structure, reveal distinct mature and immature chromophore environments, and furthermore provide evidence for the coupling of acylimine formation with trans-cis isomerization.  相似文献   

9.
The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IXalpha (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-R(c)-like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.  相似文献   

10.
PixJ1, a photoreceptor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, mediates positive phototactic motility and contains two GAF domains, the latter of which binds a bilin chromophore. Full-length PixJ1 expressed and purified from Synechocystis showed unique reversible photoconversion between a blue light-absorbing (Pb) form and a green light-absorbing (Pg) form (1) in contrast to the reversible phototransformation between the red light-absorbing form and far-red light-absorbing form of the other GAF-containing photoreceptors such as plant or bacterial phytochromes. To clarify the origin of the blue-shifted photoconversion, we tried to reconstitute this blue-green reversible phototransformation by synthesizing the second GAF domain in Escherichia coli transformed with genes for biosynthesis of four different bilins, biliverdin (BV), bilirubin (BR), phycocyanobilin (PCB), and phycocyanorubin (PCR), as final products. The three expression systems, the BR system being the exception, produced a GAF polypeptide with a covalently bound bilin. The GAF polypeptide from the BV-synthesizing system exhibited an irreversible photoconversion, while that from the PCB-synthesizing system revealed photoconversion between Pb and Pg almost identical to that of the full-length PixJ1, indicating that PCB is responsible for the blue-green reversible photoconversion. Furthermore, the GAF polypeptide from the PCR-producing system exhibited almost the same reversible spectral change, possibly coming from the PCB accumulated in the PCR-biosynthetic pathway. Mass spectrometry (MS) of the main tryptic chromopeptide revealed that the chromophore binds to a 21-amino acid peptide that contains a cysteine-histidine motif for phytochrome chromophore binding and that an ion signal can be assigned to desorbed PCB. The absorption spectra of the denatured GAF polypeptide suggested that PCB is attached to the protein moiety in a twisted conformation that disrupts the pi-electron conjugation between the A and B rings, possibly being held in position through a second covalent linkage.  相似文献   

11.
Photoconversion of various green and cyan fluorescent proteins to the red fluorescent state under the oxygen-free conditions was studied. Such photoconversion has earlier been described for the EGFP green fluorescent protein. Phylogenetically distant fluorescent proteins that have a low identity of their amino acid sequences but contain chemically identical chromophores based on a Tyr residue were shown to be susceptible to this type of photoconversion. At the same time, the ECFP protein, which has 92% homology with EGFP but contains a chromophore based on tryptophan did not undergo the photoconversion. Thus, it is precisely the chromophore structure, rather than the amino acid environment that determines the ability of green fluorescent proteins to display photoconversion to the red fluorescent state under anaerobic conditions.  相似文献   

12.
A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).  相似文献   

13.
Phytochrome is a multidomain dimeric red light photoreceptor that utilizes a chromophore-binding domain (CBD), a PHY domain, and an output module to induce cellular changes in response to light. A promising biotechnology tool emerged when a structure-based substitution at Asp-207 was shown to be an infrared fluorophore that uses a biologically available tetrapyrrole chromophore. We report multiple crystal structures of this D207H variant of the Deinococcus radiodurans CBD, in which His-207 is observed to form a hydrogen bond with either the tetrapyrrole A-ring oxygen or the Tyr-263 hydroxyl. Based on the implications of this duality for fluorescence properties, Y263F was introduced and shown to have stronger fluorescence than the original D207H template. Our structures are consistent with the model that the Y263F change prevents a red light-induced far-red light absorbing phytochrome chromophore configuration. With the goal of decreasing size and thereby facilitating use as a fluorescent tag in vivo, we also engineered a monomeric form of the CBD. Unexpectedly, photoconversion was observed in the monomer despite the lack of a PHY domain. This observation underscores an interplay between dimerization and the photochemical properties of phytochrome and suggests that the monomeric CBD could be used for further studies of the photocycle. The D207H substitution on its own in the monomer did not result in fluorescence, whereas Y263F did. Combined, the D207H and Y263F substitutions in the monomeric CBD lead to the brightest of our variants, designated Wisconsin infrared phytofluor (Wi-Phy).  相似文献   

14.
One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.  相似文献   

15.
The irreversible photoconversion of T203V green fluorescent protein (GFP) via decarboxylation is studied under femtosecond excitation using an accumulative product detection method that allows us to measure small conversion efficiencies of down to ΔOD = 10−7 absorbance change per pulse. Power studies with 800- and 400-nm pulse excitation reveal that excitation to higher states of the neutral form of the GFP chromophore induces photoconversion very efficiently. The singly excited neutral chromophore is a resonant intermediate of the two-step excitation process that leads to efficient photoconversion. We determine the dynamics of this two-step process by separating the excitation step of the neutral chromophore from the further excitation step to the reactive state in a time-resolved two-color experiment. The dynamics show that a further excitation to the very reactive higher excited state is only possible from the initially excited neutral chromophore and not from the fluorescent intermediate state. For applications of GFP in two-photon fluorescence microscopy, the found photochemical behavior implies that the high intensity conditions used in microscopy can lead to photoconversion easily and care has to be taken to avoid unwanted photoconversion.  相似文献   

16.
EosFP is a novel fluorescent protein from the stony coral Lobophyllia hemprichii. Its gene was cloned in Escherichia coli to express the tetrameric wild-type protein. The protein emits strong green fluorescence (516 nm) that shifts toward red (581 nm) upon near-ultraviolet irradiation at ∼390 nm due to a photo-induced modification that involves a break in the peptide backbone next to the chromophore. Using site-directed mutagenesis, dimeric (d1EosFP, d2EosFP) and monomeric (mEosFP) variants were produced with essentially unaltered spectroscopic properties. Here we present a spectroscopic characterization of EosFP and its variants, including room- and low-temperature spectra, fluorescence lifetime determinations, two-photon excitation and two-photon photoconversion. Furthermore, by transfection of a human cancer (HeLa) cell with a fusion construct of a mitochondrial targeting sequence and d2EosFP, we demonstrate how localized photoconversion of EosFP can be employed for resolving intracellular processes.  相似文献   

17.
We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore-protein interactions. Cph1Delta2, the 514-residue N-terminal sensor module produced as a recombinant His6-tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full-length product. We generated 12 site-directed mutants of Cph1Delta2, focusing on conserved residues which might be involved in chromophore-protein autoassembly and photoconversion. Folding, phycocyanobilin-binding and Pr-->Pfr photoconversion were analysed using CD and UV-visible spectroscopy. MALDI-TOF-MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red-shifted photochromic holoprotein. H260Q shows UV-visible properties similar to the wild-type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore-protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild-type, a Pfr-like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV-Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re-uptake) during Pr-->Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment.  相似文献   

18.
Assembly of holophytochrome in the plant cell requires covalent attachment of the linear tetrapyrrole chromophore precursor, phytochromobilin, to a unique cysteine in the nascent apoprotein. In this investigation we compare chromophore analogs with the natural chromophore precursor for their ability to attach covalently to recombinant oat apophytochrome and to form photoactive holoproteins. Ethylidene-containing analogs readily form covalent adducts with apophytochrome, whereas chromophores lacking this double bond are poor substrates for attachment. Kinetic measurements establish that although the chromophore binding site on apophytochrome is best tailored to phytochromobilin, apophytochrome will accommodate the two analogs with modified D-rings, phycocyanobilin and phycoerythrobilin. The phycocyanobilin-apophytochrome adduct is photoactive and undergoes a light-induced protein conformational change similar to the native holoprotein. By contrast, the phycoerythrobilin adduct is locked into a photochemically inactive protein conformation that is similar to the red light-absorbing Pr form of phytochrome. These results support the hypothesis that the photoconversion from Pr to Pfr, the far red light- absorbing form of phytochrome, involves the photoisomerization of the C15 double bond. Knowledge gained from these studies provides impetus for rational design of chromophore analogs whose insertion into apophytochrome should elicit profound changes in light-mediated plant growth and development.  相似文献   

19.
We performed steady state fluorescence measurements with phytochromes Agp1 and Agp2 of Agrobacterium tumefaciens and three mutants in which photoconversion is inhibited. These proteins were assembled with the natural chromophore biliverdin (BV), with phycoerythrobilin (PEB), which lacks a double bond in the ring C-D-connecting methine bridge, and with synthetic bilin derivatives in which the ring C-D-connecting methine bridge is locked. All PEB and locked chromophore adducts are photoinactive. According to fluorescence quantum yields, the adducts may be divided into four different groups: wild type BV adducts exhibiting a weak fluorescence, mutant BV adducts with about 10-fold enhanced fluorescence, adducts with locked chromophores in which the fluorescence quantum yields are around 0.02, and PEB adducts with a high quantum yield of around 0.5. Thus, the strong fluorescence of the PEB adducts is not reached by the locked chromophore adducts, although the photoconversion energy dissipation pathway is blocked. We therefore suggest that ring D of the bilin chromophore, which contributes to the extended π-electron system of the locked chromophores, provides an energy dissipation pathway that is independent on photoconversion.  相似文献   

20.
Cysteine protease is ubiquitous in nature. Excess activity of this enzyme causes intercellular proteolysis, muscle tissue degradation, etc. The role of water-mediated interactions in the stabilization of catalytically significant Asp158 and His159 was investigated by performing molecular dynamics simulation studies of 16 three-dimensional structures of plant thiol proteases. In the simulated structures, the hydrophilic W(1), W(2) and WD(1) centers form hydrogen bonds with the OD1 atom of Asp158 and the ND1 atom of His159. In the solvated structures, another water molecule, W(E), forms a hydrogen bond with the NE2 atom of His159. In the absence of the water molecule W(E), Trp177 (NE1) and Gln19 (NE2) directly interact with the NE2 atom of His159. All these hydrophilic centers (the locations of W(1), W(2), WD(1), and W(E)) are conserved, and they play a critical role in the stabilization of His-Asp complexes. In the water dynamics of solvated structures, the water molecules W(1) and W(2) form a water...water hydrogen-bonded network with a few other water molecules. A few dynamical conformations or transition states involving direct (His159 ND1...Asp158 OD1) and water-mediated (His159 ND1...W(2)...Asp158 OD1) hydrogen-bonded complexes are envisaged from these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号