首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal control algorithm to calculate the optimal feed rate profile of nutrient solution containing two limiting nutrients was proposed. Different from other conventional optimization methods, the proposed algorithm calculated the optimal control profiles for different initial and feed conditions. The singular optimal control algorithm, dynamic programming, and nonsingular transformation algorithm were used for the optimization of simple problems of the 4th order and the performances were compared. With the proposed transformation algorithm, the final MAb concentration increased and the CPU time decreased. For the different initial glucose and glutamine conditions, the optimal control profiles were calculated with the proposed transformation algorithm. As the initial glutamine concentration increased, the final MAb concentration also increased due to the cell viability increase. This was also applied to the different feed compositions. When the glutamine concentration was increased in the feed stream, the final MAb concentration also increased.  相似文献   

2.
MOTIVATION: Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. RESULTS: We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.  相似文献   

3.
The objective of this contribution is the design of optimal feeding strategies for fed-batch bioprocesses, where complex dynamic models with input and state constraints are present. For the solution of this dynamic optimization problem a transformation to a finite dimensional optimization problem is made using piecewise linear control profiles. The optimization of these profiles is performed by a sequential approach, that includes an ODE solver for the solution of the model ODE's. Further an adaptive mesh selection algorithm was investigated for an appropriate discretization of the control profiles. The implementation of the resulting optimal feeding profiles is shown for a process example, namely the production of nikkomycin by Streptomyces tendae. This implementation uses a hierarchical process control framework, that consists of components for process monitoring, state estimation, and trajectory control.  相似文献   

4.
The acidification behavior of Lactobacillus bulgaricus and Streptococcus thermophilus for yoghurt production was investigated along temperature profiles within the optimal window of 38–44 °C. For the optimal acidification temperature profile search, an optimization engine module built on a modular artificial neural network (ANN) and genetic algorithm (GA) was used. Fourteen batches of yoghurt fermentations were evaluated using different temperature profiles in order to train and validate the ANN sub-module. The ANN captured the nonlinear relationship between temperature profiles and acidification patterns on training data after 150 epochs. This served as an evaluation function for the GA. The acidification slope of the temperature profile was the performance index. The GA sub-module iteratively evolved better temperature profiles across generations using GA operations. The stopping criterion was met after 11 generations. The optimal profile showed an acidification slope of 0.06117 compared to an initial value of 0.0127 and at a set point sequence of 43, 38, 44, 43, and 39 °C. Laboratory evaluation of three replicates of the GA suggested optimum profile of 43, 38, 44, 43, and 39 °C gave an average slope of 0.04132. The optimization engine used (to be published elsewhere) could effectively search for optimal profiles of different physico-chemical parameters of fermentation processes.  相似文献   

5.
Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins remains a difficult issue. We present a tool based on a generalized Viterbi algorithm that generates optimal and sub-optimal alignments between a sequence and a Hidden Markov Model. The tool is implemented as a new function within the HMMER package called hmmkalign.  相似文献   

6.
A new approach to optimization of bioprocesses described by fuzzy rules is introduced in the paper. It is based on genetic algorithms (GA) and allows to determine optimal values or profiles of control variables and to optimize fuzzy rules (parameters of membership functions). The process can be described by linguistic variables and fuzzy rules. An algorithm and related software was developed. The approach was applied to an industrial antibiotic fermentation. The optimal profile of a physical variable of the preculture was determined which leads to an increasing output product concentration in the main culture of about 5%.  相似文献   

7.
针对局部线性嵌入算法(LocalLinearEmbedding,LLE)利用试凑法寻找近邻数耗时的缺陷性,提出一种增强的核局部线性嵌入算法(EnhancedKernelLocalLinearEmbedding,EKLLE)自动为样本分配邻域;该算法以高斯核函数为核心改进标准LLE距离度量准则,结合样本的类别信息,无需人工干预自动为样本设置不同的近邻数,克服了试凑法获得最优结果时需要大量时间;最后在各样本近邻数不相同的情况下对数据进行维数简约及待测样本分类。EKLLE算法有效地将高维基因表达谱数据映射到低维本质空间中,解决了传统LLE算法不能很好地处理合噪声或者稀疏数据的缺点。通过对比其他肿瘤样本分类实验,验证本文方法的实时性和精确性。  相似文献   

8.
The optimal temperature policy that maximizes the time-averaged productivity of a continuous immobilized enzyme packed bed reactor is determined. This optimization study takes into consideration the enzyme thermal deactivation with substrate protection during the reactor operation. The general case of reversible Michaelis-Menten kinetics under constant reactor feed flow rate is assumed. The corresponding nonlinear optimization problem is solved using the calculus of variations by applying the disjoint policy. This policy reduces the optimization problem into a differential-algebraic system, DAE. This DAE system defines completely the optimal temperature-time profiles. These profiles depend on the kinetic parameters, feed substrate concentration, operating period, and the residence time and are characterized by increasing form with time. Also, general analytical expressions for the slopes of the temperature and residual enzyme activity profiles are derived. An efficient solution algorithm is developed to solve the DAE system, which results into a one-dimensional optimization problem with simple bounds on the initial feed temperature. The enzymatic isomerization of glucose into fructose is selected as a case study. The computed productivities are very close to that obtained by numerical nonlinear optimization with simpler problem to solve. Moreover, the computed conversion profiles are almost constant over 90% of the operating periods, thus producing a homogeneous product.  相似文献   

9.
关联规则挖掘技术是寻找基因间关系的有效手段,但现有算法未针对高通量生物数据的特点进行优化,而存在着效率低下等缺点。提出的MAGO-FP算法,使用Gene Ontology(GO)的概念分层结构,通过对FP-Growth算法的扩展,具有一定的性能优势。在此基础上,应用该算法分析了一组由S.cerevisiae酵母菌cDNA微阵列芯片产生的实验数据,发现了一些候选关联规则。并针对其中一些重要的关联规则,通过相关文献证实了其真实性,表明该算法在基因表达分析等研究中具有应用价值。  相似文献   

10.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

11.
Adaptive quality-based clustering of gene expression profiles   总被引:17,自引:0,他引:17  
MOTIVATION: Microarray experiments generate a considerable amount of data, which analyzed properly help us gain a huge amount of biologically relevant information about the global cellular behaviour. Clustering (grouping genes with similar expression profiles) is one of the first steps in data analysis of high-throughput expression measurements. A number of clustering algorithms have proved useful to make sense of such data. These classical algorithms, though useful, suffer from several drawbacks (e.g. they require the predefinition of arbitrary parameters like the number of clusters; they force every gene into a cluster despite a low correlation with other cluster members). In the following we describe a novel adaptive quality-based clustering algorithm that tackles some of these drawbacks. RESULTS: We propose a heuristic iterative two-step algorithm: First, we find in the high-dimensional representation of the data a sphere where the "density" of expression profiles is locally maximal (based on a preliminary estimate of the radius of the cluster-quality-based approach). In a second step, we derive an optimal radius of the cluster (adaptive approach) so that only the significantly coexpressed genes are included in the cluster. This estimation is achieved by fitting a model to the data using an EM-algorithm. By inferring the radius from the data itself, the biologist is freed from finding an optimal value for this radius by trial-and-error. The computational complexity of this method is approximately linear in the number of gene expression profiles in the data set. Finally, our method is successfully validated using existing data sets. AVAILABILITY: http://www.esat.kuleuven.ac.be/~thijs/Work/Clustering.html  相似文献   

12.
《Genomics》2020,112(3):2524-2534
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.  相似文献   

13.
Based upon the general characteristics of the optimal feed rate profiles presented in an earlier article, efficient computational algorithms have been developed for fed-batch fermentation processes described by four or less mass balance equations. These algorithms make computations of optimal substrate feed rate profiles straight forward and simple for various fed-batch cultures for such products as antibiotics, amino acids, enzymes, alcohols, and cell mass. Numerical examples of penicillin fermentation and bacterial cell mass production are given in detail, illustrating the use of these algorithms.  相似文献   

14.
A general protein sequence alignment methodology for detecting a priori unknown common structural and functional regions is described. The method proposed in this paper is based on two basic requirements for a meaningful alignment. First, each sequence or segment of a sequence is characterized by a multivariate physicochemical profile. Second, the alignment is performed by considering all the sequences simultaneously, and the algorithm detects those regions that form a set of similar profiles. In order to test the structural meaning of the alignment obtained from the sequences, quantitative comparisons are performed with structurally conserved regions (SCR) determined from the X-ray structures of three serine proteases. Results suggest that the limits of the SCR may be predicted from the similarities between the physicochemical profiles of the sequences. The procedures are not completely automated. The final step requires a visual screening of alternative pathways in order to determine an optimal alignment.  相似文献   

15.
The optimal feeding profile of a fed batch process was designed by means of an evolutionary algorithm. The algorithm chromosomes include the real-valued parameters of a profile function, defined by previous knowledge. Each chromosome is composed of the parameters that define the feeding profile: the feed rates, the singular arc parameters and the switching times between the profile states. The feed profile design was tested on a fed-batch process simulation. The accepted profiles were smooth and similar to those derived analytically in other studies. Two selection functions, roulette wheel and geometric ranking, were compared. In order to overcome the problem of model mismatches, a novel optimization scheme was carried out. During its operation the process was sampled, the model was updated and the optimization procedure was applied. The on-line optimization showed improvement in the objective function for relatively low sample times. Choosing the sampling frequencies depends on the process dynamics and the time required for the measurements and optimization. Further study on experiments of fed-batch process demonstrated the use of complex, non-differentiable model and produced improved process performances using the optimal feeding profile.  相似文献   

16.
Measurements of the sagittal profiles of the articular surfaces of 24 femoral condyles were performed using a laser range finder. An algebraic algorithm was developed to reconstruct the measured sagittal profiles with simple geometry. In particular, it has been shown that a two-circular-arc model provides a very accurate reconstruction of the actual profiles in the femorotibial contact region. The average sagittal profile was used for a femorotibial contact analysis of TKA implants. The contact analysis was performed by using a rigid-body-spring model extended to the case of nonlinear force-deformation behavior of the tibial polyethylene component.  相似文献   

17.
A generic methodology for feeding strategy optimization is presented. This approach uses a genetic algorithm to search for optimal feeding profiles represented by means of artificial neural networks (ANN). Exemplified on a fed-batch hybridoma cell cultivation, the approach has proven to be able to cope with complex optimization tasks handling intricate constraints and objective functions. Furthermore, the performance of the method is compared with other previously reported standard techniques like: (1) optimal control theory, (2) first order conjugate gradient, (3) dynamical programming, (4) extended evolutionary strategies. The methodology presents no restrictions concerning the number or complexity of the state variables and therefore constitutes a remarkable alternative for process development and optimization. This revised version was published online in June 2005 with corrections to the Appendix.  相似文献   

18.
Zou J  Hong G  Guo X  Zhang L  Yao C  Wang J  Guo Z 《PloS one》2011,6(10):e26294

Background

There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS) studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached.

Results

In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE) peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR) control approach and that the reproducibility of DE peak detection could thereby be increased.

Conclusions

Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.  相似文献   

19.
20.
A nonlinear model of a recombinant Escherichia coli producing porcine growth hormone (pGH) fermentation was developed. The model was used to calculate a glucose feeding and temperature strategy to optimize the production of pGH. Simulations showed that the implementation of optimal feed and temperature profiles was sensitive to the maximum specific growth rate, and a mismatch could result in excessive acetate production and a significant reduction in pGH yield. An optimization algorithm was thus developed, using feedback control, to counter the effects of uncertainty in the specific growth rate and thus determine an optimal operating strategy for pGH production. This policy was experimentally implemented in a 10 L fermenter and resulted in a 125% increase in productivity over the previous best experimental result with this system—in spite of significant plant-model mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号