首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally the unusual ciliate Paraspathidium has been regarded as a gymnostome haptorid (Litostomatea) based on its morphological features. In order to test this placement, the small-subunit (SSU) rRNA gene was sequenced for two isolates of Paraspathidium apofuscum and phylogenetic trees were constructed. Furthermore, the putative structure of the variable regions 2 and 4 of the SSU rRNA gene were predicted and compared with those of other ciliates. Our analyses of SSU rRNA gene sequences revealed (i) a clear separation of Paraspathidium from the haptorids and indeed the class Litostomatea, rejecting its systematic position based on morphological characters and (ii) an equally clear association with the assemblage comprising the classes Plagiopylea and Prostomatea. Putative secondary structures of the variable regions 2 and 4 of Paraspathidium are similar to those of the plagiopyleans and prostomateans but differ from the hapotrids in Helix 10, Helix E10-1 and Helix E23-5. Taken together, these results support the placement of Paraspathidium close to prostomateans and plagiopyleans, or even as a distinct group possibly at ordinal rank, within the class Plagiopylea.  相似文献   

2.
Details of the phylogenetic relationships among tetrahymenine ciliates remain unresolved despite a rich history of investigation with nuclear gene sequences and other characters. We examined all available species of Tetrahymena and three other tetrahymenine ciliates, and inferred their phylogenetic relationships using nearly complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and small subunit (SSU) rRNA gene sequences. The inferred phylogenies showed the genus Tetrahymena to be monophyletic. The three “classical” morphology-and-ecology-based groupings are paraphyletic. The SSUrRNA phylogeny confirmed the previously established australis and borealis groupings, and nine ribosets. However, these nine ribosets were not well supported. Using cox1 gene, the deduced phylogenies based on this gene revealed 12 well supported groupings, called coxisets, which mostly corresponded to the nine ribosets. This study demonstrated the utility of cox1 for resolving the recent phylogeny of Tetrahymena, whereas the SSU rRNA gene provided resolution of deeper phylogenetic relationships within the genus.  相似文献   

3.
Gregarines constitute a large group of apicomplexans with diverse modes of nutrition and locomotion that are associated with different host compartments (e.g. intestinal lumena and coelomic cavities). A broad molecular phylogenetic framework for gregarines is needed to infer the early evolutionary history of apicomplexans as a whole and the evolutionary relationships between the diverse ultrastructural and behavioral characteristics found in intestinal and coelomic gregarines. To this end, we sequenced the SSU rRNA gene from (1) Lankesteria abbotti from the intestines of two Pacific appendicularians, (2) Pterospora schizosoma from the coelom of a Pacific maldanid polychaete, (3) Pterospora floridiensis from the coelom of a Gulf Atlantic maldanid polychaete and (4) Lithocystis sp. from the coelom of a Pacific heart urchin. Molecular phylogenetic analyses including the new sequences demonstrated that several environmental and misattributed sequences are derived from gregarines. The analyses also demonstrated a clade of environmental sequences that was affiliated with gregarines, but as yet none of the constituent organisms have been described at the ultrastructural level (apicomplexan clade I). Lankesteria spp. (intestinal parasites of appendicularians) grouped closely with other marine intestinal eugregarines, particularly Lecudina tuzetae, from polychaetes. The sequences from all three coelomic gregarines branched within a larger clade of intestinal eugregarines and were similarly highly divergent. A close relationship between Pterospora schizosoma (Pacific) and Pterospora floridiensis (Gulf Atlantic) was strongly supported by the data. Lithocystis sp. was more closely related to a clade of marine intestinal gregarines consisting of Lankesteria spp. and Lecudina spp. than it was to the Pterospora clade. These data suggested that coelomic parasitism evolved more than once from different marine intestinal eugregarines, although a larger taxon sample is needed to further explore this inference.  相似文献   

4.
Stingl U  Brune A 《Protist》2003,154(1):147-155
SSU rRNA genes of oxymonad protists from the hindgut of the wood-feeding termite Reticulitermes flavipes were PCR-amplified using a newly designed oxymonad-specific forward primer and a newly designed reverse primer specific for termite gut flagellates. After cloning, the clone library was sorted into four groups by RFLP analysis and nearly full-length SSU rRNA gene sequences were obtained for representative clones from each group. Phylogenetic analysis revealed that sequences of all four groups formed a monophyletic cluster with the only other existing SSU rRNA gene sequence of oxymonads. Using whole-cell hybridization with clone-specific fluorescently labeled probes, each of the four clone groups could be assigned to a specific morphotype, which were identified as Dinenympha gracilis, Dinenympha fimbriata, and so-far undescribed species of Pyrsonympha and Dinenympha. Our results demonstrate that the morphological variety of oxymonads is not caused by the presence of different developmental stages of the same organism, but that the various morphotypes represent different species.  相似文献   

5.
During seasonal epizootics of neurologic disease and mass mortality in the summers of 1992, 1993 and 1994 on a sea-farm in Ireland, Atlantic salmon Salmo salar smolts suffered from encephalitis associated with infection by a neurotropic parasite. Based on ultrastructural studies, this neurotropic parasite was identified as an intercellular presporogonic multicellular developmental stage of a histozoic myxosporean, possibly a Myxobolus species. In order to generate sequence data for phylogenetic comparisons to substantiate the present morphological identification of this myxosporean in the absence of detectable sporogony, polymerase chain reaction (PCR), Southern blot hybridization, dideoxynucleotide chain-termination DNA sequencing, and in situ hybridization (ISH) were used in concert to characterize segments of the small subunit ribosomal RNA (SSU rRNA) gene. Oligonucleotide primers were created from sequences of the SSU rRNA gene of M. cerebralis and were employed in PCR experiments using DNA extracted from formalin-fixed paraffin-embedded tissue sections of brains from Atlantic salmon smolts in which the myxosporean had been detected by light microscopy. Five segments of the SSU rRNA gene of the myxosporean, ranging in length from 187 to 287 base pairs, were amplified, detected by hybridization with sequence-specific probes, and sequenced. Consensus sequences from these segments were aligned to create a partial sequence of the SSU rRNA gene of the myxosporean. Assessments of sequence identity were made between this partial sequence and sequences of SSU rRNA genes from 7 myxosporeans, including Ceratomyxa shasta, Henneguya doori, M. arcticus, M. cerebralis, M. insidiosus, M. neurobius, and M. squamalis. The partial SSU rRNA gene sequence from the myxosporean had more sequence identity with SSU rRNA gene sequences from neurotropic and myotropic species of Myxobolus than to those from epitheliotropic species of Myxobolus or Henneguya, or the enterotropic species of Ceratomyxa, and was identical to regions of the SSU rRNA gene of M. cerebralis. Digoxigenin-labeled oligonucleotide DNA probes complementary to multiple segments of the SSU rRNA gene of M. cerebralis hybridized with DNA of the parasite in histologic sections of brain in ISH experiments, demonstrating definitively that the segments of genome amplified were from the organisms identified by histology and ultrastructural analysis. Based on sequence data derived entirely from genetic material of extrasporogonic stages, the SSU rDNA sequence identity discovered in this study supports the hypothesis that the myxosporean associated with encephalitis of farmed Atlantic salmon smolts is a neurotropic species of the genus Myxobolus, with sequences identical to those of M. cerebralis.  相似文献   

6.
Twenty strains of flattened amoebae including 17 isolated from fish were characterised morphologically both at light microscopical and ultrastructural levels and assigned to either the genus Vannella Bovee, 1965 or the genus Platyamoeba Page, 1969. Sequence-based phylogenetic analyses of SSU rRNA genes from a data set representing a total of 29 strains of flattened amoebae strongly indicated that morphological features discriminating between these genera do not reflect phylogenetic relationships of representative strains. Contrary to a previous study, strains of this expanded assemblage formed clusters that did not reflect their environmental origin. Monophyletic groups were of mixed origins and contained freshwater as well as marine strains of both genera isolated in geographically distant localities of various continents. These findings were supported by results of phylogenetic analyses of selected strains based on ITS sequences. However, topologies of acquired ITS trees were not congruent with results inferred from SSU rRNA analyses.  相似文献   

7.
ABSTRACT. Peritrich ciliates have been traditionally subdivided into two orders, Sessilida and Mobilida within the subclass Peritrichia. However, all the existing small subunit (SSU) rRNA phylogenetic trees showed that the sessilids and mobilids did not branch together. To shed some light on this disagreement, we tested whether or not the classic Peritrichia is a monophyletic group by assessing the reliability of the SSU rRNA phylogeny in terms of congruency with α‐tubulin phylogeny. For this purpose, we obtained 10 partial α‐tubulin sequences from peritrichs and built phylogenetic trees based on α‐tubulin nucleotide and amino acid data. A phylogenetic tree from the α‐tubulin and SSU rRNA genes in combination was also constructed and compared with that from the SSU rRNA gene using a similar species sampling. Our results show that the mobilids and sessilids are consistently separated in all trees, which reinforces the idea that the peritrichs do not constitute a monophyletic group. However, in all α‐tubulin gene trees, the urceolariids and trichodiniids do not group together, suggested mobilids may not be a monophyletic group.  相似文献   

8.
Picoplanktonic prasinophytes are well represented in culture collections and marine samples. In order to better characterize this ecologically important group, we compared the phylogenetic diversity of picoplanktonic prasinophyte strains available at the Roscoff Culture Collection (RCC) and that of nuclear SSU rDNA sequences from environmental clone libraries obtained from oceanic and coastal ecosystems. Among the 570 strains avalaible, 91 belonged to prasinophytes, 65 were partially sequenced, and we obtained the entire SSU rDNA sequence for a selection of 14 strains. Within the 18 available environmental clone libraries, the prasinophytes accounted for 12% of the total number of clones retrieved (142 partial sequences in total), and we selected 9 clones to obtain entire SSU rDNA sequence. Using this approach, we obtained a subsequent genetic database that revealed the presence of seven independent lineages among prasinophytes, including a novel clade (clade VII). This new clade groups the genus Picocystis, two unidentified coccoid strains, and 4 environmental sequences. For each of these seven lineages, at least one representative is available in culture. The three picoplanktonic genera Ostreococcus, Micromonas, and Bathycoccus (order Mamiellales), were the best represented prasinophytes both in cultures and genetic libraries. SSU rDNA phylogenetic analyses suggest that the genus Bathycoccus forms a very homogeneous group. In contrast, the genera Micromonas and Ostreococcus turned out to be quite complex, consisting of three and four independent lineages, respectively. This report of the overall diversity of picoeukaryotic prasinophytes reveals a group of ecologically important and diverse marine microorganims that are well represented by isolated cultures.  相似文献   

9.
While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy.  相似文献   

10.
Skovgaard A  Daugbjerg N 《Protist》2008,159(3):401-413
Paradinium and Paradinium-like parasites were detected in various copepod hosts collected in the NW Mediterranean Sea, the North Atlantic Ocean, and the Godth?bsfjord (Greenland). The identity and systematic position of the parasitic, plasmodial protist Paradinium was investigated on the basis of SSU rDNA and morphology. SSU rDNA sequences were obtained from 3 specimens of Paradinium poucheti isolated from their cyclopoid copepod host, Oithona similis. In addition, a comparable sequence was obtained from a hitherto undescribed species of Paradinium from the harpactacoid copepod Euterpina acutifrons. Finally, SSU rDNA sequences were acquired from 2 specimens of a red plasmodial parasite (RP parasite) isolated from Clausocalanus sp. Both morphological and SSU rDNA sequence data supported that P. poucheti and Paradinium sp. are closely related organisms. In phylogenetic analyses based on SSU rDNA sequences, Paradinium spp. clustered with sequences from an uncultured eukaryote clone from the Pacific Ocean and two sequences from haplosporidian-like parasites of shrimps, Pandalus spp. This Paradinium clade branched as a sister group to a clade comprising the Haplosporidia and the Foraminifera. The RP parasite had a superficial morphological resemblance to Paradinium and has previously been interpreted as a member of this genus. However, several morphological characters contradict this and SSU rDNA sequence data disagree with the RP parasite and Paradinium being related. The phylogenetic analyses suggested that the RP parasite is a fast-evolved alveolate and a member of the so-called marine alveolate Group I (MAGI) and emerging data now suggest that this enigmatic group may, like the syndinian dinoflagellates, consist of heterotrophic parasites.  相似文献   

11.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

12.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

13.
Syndinean dinoflagellates of the genus Euduboscquella infect marine ciliates and dinoflagellates. Euduboscquella species infecting dinoflagellates are understudied relative to congeners infecting ciliates and their molecular phylogeny remains uncertain. Morphology, development, and rRNA gene sequences of intracellular parasites infecting heterotrophic dinoflagellates from coastal waters of Busan, Republic of Korea in summer to fall of 2019–2021 indicate that Cucumeridinium coeruleum, Gyrodinium cf. ochraceum, and two unidentified species of Gyrodinium were each infected by a different Euduboscquella species. Morphological features including shield structure, shape and color of the mature trophont, and sporogenic process distinguished each of the four parasites from the 10 previously described species of Euduboscquella. Our molecular and phylogenetic analyses showed considerably greater genetic distance of SSU and ITS-LSU rRNA gene regions among Euduboscquella species infecting dinoflagellates than among those infecting ciliates. Rather than clustering as a group with Euduboscquella species infecting ciliates, SSU rRNA sequences of the four novel parasites spread out across the syndinean Group I phylogeny, occurring in two different clades and a new lineage. Placement of our novel parasites in multiple clades that encompass Ichythyodinium chabelardi strongly indicates that the genus Euduboscquella is paraphyletic.  相似文献   

14.
Babesia isolates from an elk (Cervus elaphus canadensis) and a caribou (Rangifer tarandus caribou) with fatal infections were compared to Babesia odocoilei (Engeling isolate) from white-tailed deer (Odocoileus virginianus) by experimental infection, serologic, and small subunit ribosomal RNA (SSU rRNA) gene sequence analysis studies. Both the indirect fluorescent antibody test and immunoprecipitation assays demonstrated antigenic variation among the isolates. Experimental infection studies showed no clinical differences among the isolates. Nucleotide sequence analysis showed that the elk and caribou Babesia sp. isolates possessed SSU rRNA genes with identical sequences to that of B. odocoilei. A phylogenetic tree constructed from SSU rRNA gene sequences shows that B. odocoilei is most closely related to Babesia divergens, both of which branch together in the true babesia clade.  相似文献   

15.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

16.
Using sequences of the mitochondrial 16S rRNA gene, we reconstructed the phylogeography of six widely distributed Malagasy reptiles: two gekkonid lizard species, Phelsuma lineata and Hemidactylus mercatorius; two chameleons, the Calumma brevicorne complex, and Furcifer lateralis; and two skinks, Trachylepis gravenhorstii and Trachylepis elegans. Genetic differentiation among major haplotype lineages was high and in some cases indicates or confirms species status of the divergent populations. Maximum uncorrected sequence divergences were between 2.2% and 8.3% within the various species or species complexes. Haplotype lineages were exclusive to geographic regions, except in the commensal H. mercatorius where in three anthropogenic habitats coexistence of haplotype lineages was observed, possibly due to human translocation. The eastward flowing rivers Mangoro and Mananara may represent barriers to gene flow in the case of three species each. Some species sampled from humid eastern and arid western Madagascar showed no differentiation between populations from these two regions; instead the pattern observed was in several cases more concordant with a differentiation along a north-south axis.  相似文献   

17.
The SSU rRNA, LSU rRNA, and cox2 genes of an unidentified Haliphthoros-like marine oomycete (NJM0034) and Haliphthoros milfordensis (NJM0131) were sequenced, and their phylogenetic relationships are analyzed and discussed. All phylogenetic trees showed that NJM0034 and NJM0131 were branched before separation of the two main saprolegnian and peronosporalean clades. These data suggest that the clear phylogenetic separation of those marine oomycete endoparasites from the two main oomycete clades. Excepting the LSU rRNA gene tree, NJM0034 and Haliphthoros spp. did not form a monophyletic group. On the other hand, H. milfordensis NJM0131 clustered with H. philippinensis SANK 15178, not with H. milfordensis NJM9434 in the cox2 amino acid sequence (COII) tree. This result strongly suggests that a taxonomic reinvestigation of the genus Haliphthoros should be considered.  相似文献   

18.
Phylogenetic studies of ciliates are mainly based on the primary structure information of the nuclear genes. Some regions of the small subunit ribosomal RNA (SSU‐rRNA) gene have distinctive secondary structures, which have demonstrated value as phylogenetic/taxonomic characters. In the current work, we predict the secondary structures of four variable regions (V2, V4, V7 and V9) in the SSU‐rRNA gene of 45 urostylids. Structure comparisons indicate that the V4 region is the most effective in revealing interspecific relationships, while the V9 region appears suitable at the family level or higher. The V2 region also offers some taxonomic information, but is too conserved to reflect phylogenetic relationships at the family or lower level, at least for urostylids. The V7 region is the least informative. We constructed several phylogenetic trees, based on the primary sequence alignment and based on an improved alignment according to the secondary structures. The results suggest that including secondary structure information in phylogenetic analyses provides additional insights into phylogenetic relationships. Using urostylid ciliates as an example, we show that secondary structure information results in a better understanding of their relationships, for example generic relationships within the family Pseudokeronopsidae.  相似文献   

19.
We determined the gyrB gene sequences of all 17 hybridizations groups of Aeromonas. Phylogenetic trees showing the evolutionary relatedness of gyrB and 16S rRNA genes in the type strains of Aeromonas were compared. Using this approach, we determined the phylogenetic position of Aeromonas culicicola MTCC 3249(T), isolated from midgut of Culex quinquefasciatus. In the gyrB based-analysis A. culicicola MTCC 3249(T) grouped with A. veronii whereas, it grouped with A. jandaei in the 16S rRNA based tree. The number of nucleotide differences in 16S rRNA sequences was less than found with the gyrB sequence data. Most of the observed nucleotide differences in the gyrB gene were synonymous. The Cophenetic Correlation Coefficient (CCC) for gyrB sequences was 0.87 indicating this gene to be a better molecular chronometer compared to 16S rRNA for delineation of Aeromonas species. This strain was found to be positive for the cytolytic enterotoxin gene. PCR-Amplicon Sequence Analysis (PCR-ASA) of this gene showed that the isolate is affiliated to type I and is potentially pathogenic. These PCR-ASA results agreed in part with the gyrB sequence results.  相似文献   

20.
Based on morphological and morphogenetic characters alone, the sibling species Stylonychia lemnae and Stylonychia mytilus, members of the Stylonychia mytilus complex, can hardly be distinguished. However, biochemical investigations of the isoenzyme pattern of different enzymes showed a distinct differentiation between these two species. In the last few years, fluorescence in situ hybridization (FISH) techniques have become a suitable and reliable tool for identification and differentiation of closely related species of protozoa, such as ciliates. To distinguish the sibling species, a set of specific oligonucleotide probes were developed. In the present study, the SSU rDNA of 7 clones of Stylonychia lemnae and 13 clones of Stylonychia mytilus, isolated from different geographic regions, were sequenced. Comparing all SSU rDNA sequences of both species, only one single difference within the whole gene was detected. Based on this difference, a set of two oligonucleotide probes, targeting the SSU rRNA of each species (Stylonychia mytilus and Stylonychia lemnae) was designed. These probes were successfully tested by applying the FISH techniques on preserved cells of different clones of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号