首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
Summary The spontaneous dwarf rat is a novel experimental model animal on the study of pituitary dwarfism. The fine structure of the anterior pituitary cells was studied in the immature and mature dwarf rats. Pituitary glands were removed from 5-, 10-, 20-day-old immature dwarfs, adult (45 days-16 weeks) dwarfs and normal 3-month-old rats and processed for electron-microscopic observation. In the control animals, growth hormone cells were readily identified by their ultrastructural characteristics, such as the presence of numerous electron-dense secretory granules, 300–350 nm in diameter, well developed rough endoplasmic reticulum and a prominent Golgi complex. In contrast, growth hormone cells were not found in the anterior pituitary gland of the spontaneous dwarf rat at any age examined. Other pituitary cell types, i.e., luteinizing hormone/ follicle stimulating hormone, thyroid stimulating hormone, adrenocorticotropic hormone and prolactin cells, appeared similar in their fine structure to those found in the control rats. In the pituitary gland of dwarf rats, a number of polygonal cells were observed either with no or relatively few secretory granules. The rough endoplasmic reticulum was arranged in parallel cisternae and the Golgi complex was generally prominent in these cells. In addition, many were found to have abundant lysosomes. A few minute secretory granules were occasionally observed; however, the immunogold technique failed to localize growth hormone or prolactin in the granules. The nature of these cells remained obscure in this study. Since their incidence and fine structural features, other than the secretory granules, were quite similar to those of the growth hormone cells in normal rats, we postulate that these cells are dysfunctional growth hormone cells. These results suggest that the cause of the growth impairment in the spontaneous dwarf rat is due to a defect in the functional growth hormone cells in the pituitary gland, and since other pituitary cell types appeared normal, the disorder seems to be analogous to the isolated growth hormone deficiency in the human.  相似文献   

4.
The vertebrate pituitary gland is a key endocrine control organ that contains six distinct hormone secreting cell types. In this study, we analyzed the role of direct cell-to-cell Delta-Notch signaling in zebrafish anterior pituitary cell type specification. We demonstrate that initial formation of the anterior pituitary placode is independent of Notch signaling. Later however, loss of Notch signaling in mind bomb (mib) mutant embryos or by DAPT treatment leads to increased numbers of lactotropes and loss of corticotropes in the anterior pars distalis (APD), increased number of thyrotropes and loss of somatotrope cell types in the posterior pars distalis (PPD), and fewer melanotropes in the posterior region of the adenohypophysis, the pars intermedia (PI). Conversely, Notch gain of function leads to the opposite result, loss of lactotrope and thyrotrope cell specification, and an increased number of corticotropes, melanotropes, and gonadotropes in the pituitary. Our results suggest that Notch acts on placodal cells, presumably as a permissive signal, to regulate progenitor cell specification to hormone secreting cell types. We propose that Notch mediated lateral inhibition regulates the relative numbers of specified hormone cell types in the three pituitary subdomains.  相似文献   

5.
Rathke's pouch contains progenitor cells that differentiate into the endocrine cells of the pituitary gland. It gives rise to gonadotrope, thyrotrope, somatotrope, corticotrope and lactotrope cells in the anterior lobe and the intermediate lobe melanotropes. Pituitary precursor cells express many members of the Notch signaling pathway including the downstream effector gene Hes1. We hypothesized that Hes1 regulates the timing of precursor differentiation and cell fate determination. To test this idea, we expressed Hes1 in differentiating pituitary cells and found that it can inhibit gonadotrope and thyrotrope differentiation. Pituitaries of Hes1 deficient mice have anterior lobe hypoplasia. All cells in the anterior lobe are specified and differentiate, but an early period of increased cell death and reduced proliferation causes reduced growth, evident as early as e14.5. In addition, cells within the intermediate lobe differentiate into somatotropes instead of melanotropes. Thus, the Hes1 repressor is essential for melanotrope specification. These results demonstrate that Notch signaling plays multiple roles in pituitary development, influencing precursor number, organ size, cell differentiation and ultimately cell fate.  相似文献   

6.
7.
8.
Hesx1 has been shown to be essential for normal pituitary development. The homeobox gene Six3 is expressed in the developing pituitary gland during mouse development but its function in this tissue has been precluded by the fact that in the Six3-deficient embryos the pituitary gland is not induced. To gain insights into the function of Six3 during pituitary development we have generated Six3+/−;Hesx1Cre/+ double heterozygous mice. Strikingly, these mice show marked dwarfism, which is first detectable around weaning, and die by the 5th-6th week of age. Thyroid and gonad development is also impaired in these animals. Analysis of Six3+/−;Hesx1Cre/+ compound embryos indicates that hypopituitarism is the likely cause of these defects since pituitary development is severely impaired in these mutants. Similar to the Hesx1-deficient embryos, Rathke's pouch is initially expanded in Six3+/−;Hesx1Cre/+ compound embryos due to an increase in cell proliferation. Subsequently, the anterior pituitary gland appears bifurcated, dysmorphic and occasionally ectopically misplaced in the nasopharyngeal cavity, but cell differentiation is unaffected. Our research has revealed a role for Six3 in normal pituitary development, which has likely been conserved during evolution as SIX3 is also expressed in the pituitary gland of the human embryo.  相似文献   

9.
Calmodulin and Ca2+- and calmodulin-dependent protein kinase were identified in the rat anterior pituitary gland. The concentration of calmodulin was 1.18 +/- 0.11 microgram/mg protein (n = 7) in the cytosol fraction. The calmodulin of the anterior pituitary gland co-migrated with brain calmodulin on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The Ka value of the partially purified enzyme for Ca2+ was 3.3 microM in the presence of 0.30 microM calmodulin. Trifluoperazine and chlorpromazine, calmodulin-interacting agents, inhibited enzyme activity, with Ki values of 1.3 and 2.6 X 10(-5) M, respectively. The enzyme was resolved into two peaks of activity, with sedimentation coefficients of 5.5 S and 16.5 S, by sucrose density gradient centrifugation. At least nine proteins were phosphorylated by the enzyme in a Ca2+- and calmodulin-dependent manner. In light of these results, the possibility that calmodulin and the calmodulin-activatable protein kinase system are involved in the mediation of the Ca2+ effect on hormone release from the anterior pituitary gland must be given consideration.  相似文献   

10.
Summary An epithelial cell line (RC-4B/C) was established from a pituitary adenoma obtained from a 3-yr-old (ACI/fMai × F344/fMai)F1 male rat. Before Year 5 in vitro, RC-4B/C cells could not be viably recovered from cryogenic storage. Recovery of viable cells from cryogenic storage in Year 5 was associated with a more transformed phenotype, including the appearance of endogenous C-type rat retroviral particles. The ultrastructural appearance of the cells was similar to that of differentiated anterior pituitary cell; the cultured cells contained numerous, electron dense, secretory granules, Golgi complexes, and extended arrays of rough endoplasmic reticulum. Immunocytochemical study showed that all cell types present in the rat anterior pituitary gland were present in the cell line. The percentage of luteinizing hormone beta (LHβ) cells in the cell line was higher (19.9%) and that of growth hormone cells was lower (12.2%) than in normal male rat pituitary, whereas the cell line contained a comparable percentage of follicle stimulating hormone beta (FSHβ), prolactin (PRL), ACTH, and thyrotropin beta cells. Radioimmunoassay data demonstrated the PRL content of the cells was comparable to that of normal male rat pituitary gland, whereas the content of LH and FSH was 70- and 800-fold lower, respectively. Assay of specific receptor sites for gonadotropin releasing hormone (GnRH) using Scatchard plots of the data established the RC-4B/C cells contained GnRH receptor sites of the same affinity as in the pituitary gland, but of twofold lower capacity. These data suggest the RC-4B/C cell line warrants further study as a model for the induction and maintenance of the gonadotropic function of the pituitary gland. An abstract of portions of these results was presented at the 8th International Congress of Endocrinology, Kyoto, Japan, 1988. This work was supported in part by grants DK-17631 (E.H.L.), CA-24145 (W.G.B.), CA-31102 (H.G.B.), AG-01753 (D.E.H.) and HD-1778 (M.T.D.) from the National Institutes of Health, Bethesda, MD, and by a grant from the Association pour la Recherche sur le Cancer, France (M.J.). The NIH is not responsible for the contents of this publication nor do the contents necessarily represent the official views of that agency. Jolanta Polkowska was a recipient of a Foundation Simone et Cino del Duca grant.  相似文献   

11.
Immunohistochemical techniques were employed to investigate orexin-A-like and orexin receptor 1 (OX1R)-like immunoreactivities in the Xenopus pituitary gland. Orexin-A-immunoreactive cells were mainly scattered in the posterior half of the pars distalis. They corresponded to thyroid-stimulating hormone (TSH)-containing cells and so far have not corresponded to other types of pituitary adenocytes. On the other hand, OX1R-immunoreactive cells were mainly distributed in the anterior half of the pars distalis and corresponded to prolactin (PRL)-containing cells; however, we found that OX1R-immunoreactive cells did not correspond to other types of adenocytes in the Xenopus pituitary. These results suggest that an orexin-A-like substance secretes with and/or without TSH from TSH-containing cells and that the peptide modulates the functions of PRL-containing cells via OX1R in a paracrine fashion.  相似文献   

12.
13.
Abstract

Using various staining techniques and methods, the following cells were differentiated from pars distalis of the pituitary gland in the mouse: corticotropic, somatotropic, lactotropic, thyrotropic and gonadotropic cells.

Diurnal activity of the differentiated cells in pars distalis of the pituitary gland was determined by the method of karyometry.

The karyometric analysis showed the existence of a distinct diurnal rhythm in nuclear volume in all five types of the differentiated cells in both sexes.  相似文献   

14.
15.
Employing the superimposition technique of electron-microscopic immunocytochemistry ultrastructural heterogeneity of the mammotropes in the pituitary gland of the European ferret,Mustela putorius furo,was studied. On the basis of the size of their secretory granules, the mammotropes were classified into three subtypes, type-I, type-II and type-Ill, which may correspond to different developmental or physiological states of a single cell type. Simultaneous study of mammotropes and somatotropes in several pairs of serial semithin sections demonstrated the occasional occurrence of bihormonal somatomammotropes /mammosomatotropes which may represent a transitional stage of the progenitor stem-somatotrope during its differentiation into mammotrope; alternatively it may be a functional intermediate during the cross-transformation of somatotrope into mammotrope or vice versa.  相似文献   

16.
Tissue-specific expression of the Cre recombinase is a well-established genetic tool to analyze gene function in specific tissues and cell types. In this report, we describe the generation of a new transgenic line that expresses Cre under the control of the rat growth hormone releasing hormone receptor (rGhrhr) promoter. This promoter, chosen to target the anterior pituitary, drives cre-mediated recombination in cells of the Pit1 lineage, including somatotrophs, lactotrophs, and thyrotrophs. Cre activity is first detected at embryonic day 13.5, and gradually increases to reach high level expression by postnatal day 2. In addition to the pituitary, rGhrhr-cre expression was detected in vibrissae and in hair follicles of the proximal limb, but not in other tissues. The rGhrhr-cre line will be a valuable tool for the study of the development of the pituitary Pit1 lineage and for the study of tumorigenesis involving these cells.  相似文献   

17.
The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R(3) -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were performed to distinguish [(125) I]IGF-I binding to IGF-I receptors and IGFBPs. Specific [(125) I]IGF-I binding in brain regions and the posterior pituitary was completely displaced by DES(1-3)IGF-I and R(3) -IGF-I, indicating binding to IGF-I receptors. In contrast, [(125) I]IGF-I binding in the anterior pituitary was not displaced by DES(1-3)IGF-I and R(3) -IGF-I, suggesting binding to an IGF-binding site that is different from the IGF-I receptor. Binding affinity of IGF-I to this site was about 10-fold lower than for the IGF-I receptor. Using western immunoblotting we were also unable to detect IGF-I receptors in human anterior pituitary. Instead, western immunoblotting and immunoprecipitation experiments showed a 150-kDa IGFBP-3-acid labile subunit (ALS) complex in the anterior pituitary and not in the posterior pituitary and other brain regions. RT-PCR experiments showed the expression of ALS mRNA in human anterior pituitary indicating that the anterior pituitary synthesizes ALS. In the brain regions and posterior pituitary, IGFBP-3 was easily washed away during pre-incubation procedures as used in the [(125) I]IGF-I binding experiments. In contrast, the IGFBP-3 complex in the anterior pituitary could not be removed by these washing procedures. Our results indicate that the human anterior pituitary contains a not previously described tightly cell membrane-bound 150-kDa IGFBP-3-ALS complex that is absent in brain and posterior pituitary.  相似文献   

18.
A variety of approaches has recently been employed to investigate how sister cells adopt distinct fates following asymmetric divisions during plant development. Surgical and drug studies have been used to analyze asymmetric divisions during both early embryogenesis in brown algae and pollen development in tobacco. Genetic screens have been used to identify genes in Arabidopsis thaliana that are required for specific asymmetric cell divisions during pollen and root development. These studies indicate that cell polarity and division orientation are closely tied to the process of cell fate specification, and suggest that differential inheritance of determinants and positional information may both be involved in the specification of cell fates following asymmetric cell division.  相似文献   

19.
In response to external environmental stimuli and intrinsic developmental cues, yeast cells reset their gene expression programs and change phenotype. These switches in cellular state require the dismantling of an initial regulatory program, in addition to the induction of different sets of genes to specify the new cell phenotype. Recent experiments examining the role of protein degradation in these transitions have highlighted the importance of inactivating previously utilized regulators and have led to advances in our understanding of how cells change from one phenotypic state to another.  相似文献   

20.
Summary Effects of fibroblast growth factor (FGF) and of bromocriptine, a dopaminergic receptor agonist, on the mitotic index in the organ-cultured anterior pituitary gland of the rat were investigated, using the colchicine metaphase-arrest technique. It has been found that FGF increases the mitotic index in the anterior pituitary explants. By contrast bromocriptine inhibits the mitogenic effect of FGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号