首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study represents the first example of immunological localization of lysosomal acid phosphatase. The intracellular localization of lysosomal acid phosphatase was investigated with immunocytochemical methods at the light and electron microscopical level in cultured fibroblasts obtained from normal subjects and from a patient with I-cell disease. Double-labeling studies using fluorescence microscopy showed that acid phosphatase is present in the same organelles as other hydrolases. At the electron microscopic level in control fibroblasts acid phosphatase was found in the rough endoplasmic reticulum, lysosomes, at the plasma membrane, in vesicles just below the plasma membrane and in multivesicular bodies. This localization was comparable with that of other lysosomal enzymes tested (acid alpha-glucosidase, N-acetyl-beta-hexosaminidase, beta-galactosidase). Acid phosphatase labeling was mainly found in association with the lysosomal membrane and with membranous material present within the lysosome. In I-cell fibroblasts the label was present in the same subcellular organelles but always associated with membranous structures. We suggest that the association of acid phosphatase with membranes might explain the normal enzyme activity found in I-cell fibroblasts.  相似文献   

2.
Intracellular transport of two lysosomal enzymes, acid alpha-glucosidase and beta-hexosaminidase, was analyzed in human fibroblasts. The precursors of beta-hexosaminidase in normal fibroblasts were released from the membrane fraction by treatment with mannose 6-phosphate, but the precursor of alpha-glucosidase was not. Percoll density gradient centrifugation revealed a normal amount of acid alpha-glucosidase activity in heavy lysosomes in I-cell disease fibroblasts despite impaired maturation and defective phosphorylation, and beta-hexosaminidase activity was markedly reduced in lysosomes. It was concluded that the membrane-bound precursor of acid alpha-glucosidase is transported to lysosomes by a phosphomannosyl receptor-independent system although the enzyme lacks the recognition marker for the phosphomannosyl receptor and processing of an intermediate form to mature forms does not occur in this disease.  相似文献   

3.
The localization, expression, and transport of two lysosomal integral membrane glycoproteins of human cells, hLAMP-1 and hLAMP-2, have been studied in mucolipidosis II (I-cell disease) fibroblasts. These cells are deficient in N-acetylglucosaminylphosphotransferase, one of the enzymes required for addition of the mannose 6-phosphate recognition signal to newly synthesized lysosomal hydrolases and a prerequisite for the sorting and transport of the hydrolases to lysosomes. I-cells analyzed by immunofluorescence microscopy with monoclonal antibodies against hLAMP-1 and hLAMP-2 showed intense staining of the inclusion bodies covering most of the cytoplasm of the cells. Immunoelectron microscopy confirmed this localization and showed that the hLAMP-positive vesicles commonly contained membrane structures or electron-dense homogeneous material characteristic of secondary lysosomes. Studies of the biosynthesis of hLAMP-2 in I-cells pulse-labeled with [35S]methionine indicated that the molecule is glycosylated in the Golgi system, is transported to vesicles with the high density characteristic of lysosomes, and has chemical properties similar to those of the glycoprotein synthesized in normal cells. The concentration of the hLAMP-2 glycoprotein was three- to fourfold greater than that in normal fibroblasts, in sharp contrast to the reduced levels of lysosomal hydrolases seen in I-cells. These experiments demonstrate that the inclusion bodies in I-cells have properties of secondary lysosomes and that the transport and targeting of the lysosomal membrane glycoproteins to the inclusion bodies of these cells is not coupled to the mannose 6-phosphate system for transporting soluble acid hydrolases.  相似文献   

4.
Lysosomal alpha-glucosidase (acid maltase) is essential for degradation of glycogen in lysosomes. Enzyme deficiency results in glycogenosis type II. The amino acid sequence of the entire enzyme was derived from the nucleotide sequence of cloned cDNA. The cDNA comprises 3636 nt, and hybridizes with a messenger RNA of approximately 3.6 kb, which is absent in fibroblasts of two patients with glycogenosis type II. The encoded protein has a molecular mass of 104.645 kd and starts with a signal peptide. Sites of proteolytic processing are established by identification of N-terminal amino acid sequences of the 110-kd precursor, and the 76-kd and 70-kd mature forms of the enzyme encoded by the cDNA. Interestingly, both amino-terminal and carboxy-terminal processing occurs. Sites of sugar-chain attachment are proposed. A remarkable homology is observed between this soluble lysosomal alpha-glucosidase and the membrane-bound intestinal brush border sucrase-isomaltase enzyme complex. It is proposed that these enzymes are derived from the same ancestral gene. Around the putative active site of sucrase and isomaltase, 10 out of 13 amino acids are identical to the corresponding amino acids of lysosomal alpha-glucosidase. This strongly suggests that the aspartic acid residue at this position is essential for catalytic function of lysosomal alpha-glucosidase.  相似文献   

5.
Fibroblasts from I-cell disease, a genetically-determined lysosomal storage disease, are shown to contain large amounts of phase-dense lysosomes. These lysosomes accumulated acridine orange and were specifically labeled with antibodies to arylsulfatase A. In normal skin fibroblasts the number of arylsulfatase-containing lysosomes was considerably lower. By immunocytochemistry, metabolic labeling and enzyme assay, the arylsulfatase A in I-cell fibroblasts was shown to be synthesized, stored and secreted at a level that was several-fold higher than that present in heterozygous I-cell or normal fibroblasts. Arylsulfatase A in I-cell fibroblasts differed from arylsulfatase in normal fibroblasts by the absence of endoglycosidase H-sensitive phosphorylated oligosaccharides. These findings indicate that arylsulfatase A in I-cells is targeted to lysosomes by a mechanism that does not appear to involve the phosphorylated mannose marker.  相似文献   

6.
The synthesis and localization of chick acid alpha-glucosidase has been studied in chick erythrocyte-human fibroblast heterokaryons. Monospecific antibodies raised against purified chick liver acid alpha-glucosidase were used. It was found that the acid alpha-glucosidase in the heterokaryons is of chick origin, and is localized in the same lysosomes as the human lysosomal enzymes. It is concluded that chick erythrocyte-human fibroblast heterokaryons provide a useful model system for the study of lysosomal enzyme synthesis and routing.  相似文献   

7.
In order to study the intracellular localization of the proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D in cultured human skin fibroblasts we have used incubation with glycyl-L-phenylalanine-beta-naphthylamide (Gly-Phe-NH-Nap) as described by Jadot et al. [Jadot, M., Colmant, C., Wattiaux-de Coninck, S. & Wattiaux, R. (1984) Biochem. J. 219,965-970] for the specific lysis of lysosomes. When a homogenate of fibroblasts was incubated for 20 min with 0.5 mM Gly-Phe-NH-Nap, a substrate for the lysosomal enzyme cathepsin C, the latency of the lysosomal enzymes alpha-glucosidase and beta-hexosaminidase decreased from 75% to 10% and their sedimentability from 75% to 20-30%. In contrast, treatment with Gly-Phe-NH-Nap had no significant effect on the latency of galactosyltransferase, a marker for the Golgi apparatus, and on the sedimentability of glutamate dehydrogenase and catalase, markers for mitochondria and peroxisomes, respectively. The maturation of alpha-glucosidase and cathepsin D in fibroblasts was studied by pulse-labelling with [35S]methionine, immunoprecipitation, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and fluorography. When homogenates of labelled fibroblasts were incubated with Gly-Phe-NH-Nap prior to immunoprecipitation, 70-80% of all proteolytically processed forms of metabolically labelled alpha-glucosidase and cathepsin D was recovered in the supernatant. The earliest proteolytic processing steps in the maturation of alpha-glucosidase and cathepsin D appeared to be coupled to their transport to the lysosomes. Although both enzymes are transported via the mannose-6-phosphate-specific transport system, the velocity with which they arrived in the lysosomes was consistently different. Whereas newly synthesized cathepsin D was found in the lysosomes 1 h after synthesis, alpha-glucosidase was detected only after 2-4 h. When a pulse-chase experiment was carried out in the presence of 10 mM NH4Cl there was a complete inhibition of the transport of cathepsin D and a partial inhibition of that of alpha-glucosidase to the lysosomes. Leupeptin, an inhibitor of lysosomal thiol proteinases, had no effect on the transport of labelled alpha-glucosidase to the lysosomes. However, the early processing steps in which the 110-kDa precursor is converted to the 95-kDa intermediate form of the enzyme were delayed, a transient 105-kDa form was observed and the conversion of the 95-kDa intermediate form to the 76-kDa mature form of the enzyme was completely inhibited.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A N-acetylglucosamine-1-phosphotransferase is involved in synthesis of a common phosphorylated recognition marker in lysosomal enzymes. Absence of this enzyme in liver, spleen, kidney and brain of two patients with I-cell disease is now reported. In these organs activities of lysosomal enzymes are close to normal. In contrast, in fibroblasts the absence of N-acetylglucosamine-1-phosphotransferase and of the common recognition marker are known to result in a severe intracellular deficiency of lysosomal enzymes. It is proposed that in certain organs the transport of lysosomal enzymes into lysosomes is mediated by alternative systems, which recognize structural features other than the phosphorylated recognition marker.  相似文献   

9.
From fibroblasts of two cases of Pompe's disease (acid alpha-glucosidase deficiency), one of the childhood type (RH-SF-1) and one of the adult type (RH-SF-2), and normal fibroblasts, antigenically cross-reactive material and acid alpha-glucosidase were immunoprecipitated and analysed by immunoelectrotransfer blotting. The acid alpha-glucosidase and antigenically cross-reactive material (which reacts with antibody raised against normal acid alpha-glucosidase) revealed a precursor form of molecular weight 97,000 and two major components of 79,000 and 76,000. When monensin was added to the fibroblast culture, the two major components of normal acid alpha-glucosidase were decreased, whereas the large molecular weight precursor was increased. On the other hand, the 97,000 molecular weight component of cross-reactive material in the Pompe's fibroblasts (RH-SF-1 and RH-SF-2) was only slightly increased on monensin treatment. The fibroblasts were pulse-chase labelled with [2-H3] mannose and 32Pi. The cross-reactive material and acid alpha-glucosidase were precipitated with anti acid alpha-glucosidase antibody, and after sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorography was performed. The radiolabel of 3H in the cross-reactive material of RH-SF-1 and -2 was weak, and 32P in the cross-reactive material of both fibroblasts was very weak when compared with those of the acid alpha-glucosidase. The radiolabel of 32P in the cross-reactive material of RH-SF-1 was extremely weak. Immunofluorescence histochemistry revealed a granular localization of acid alpha-glucosidase in the normal fibroblast cytoplasm, and a diffuse distribution of cross-reactive material in the cytoplasm of RH-SF-1 and -2. Immuno-electron microscopic examinations showed a normal acid alpha-glucosidase localization on the inner side of the lysosomal membrane and also diffusely in the lysosome; when treated with monensin, it was present on the trans part of the Golgi apparatus. Antigenically cross-reactive material, however, was found in the cytoplasm and endoplasmic reticulum. Some lysosomal localization was observed sporadically. Even after monensin treatment, it was not demonstrated on the Golgi apparatus.  相似文献   

10.
The generation of enzymes located in lysosomes, in cytosol or in endoplasmatic reticulum/Golgi complex is studied in heterokaryons in which chick erythrocyte nuclei are reactivated. The lysosomal enzymes, alpha-glucosidase (alpha-glu) and beta-galactosidase (beta-gal), are synthesized in heterokaryons obtained after fusion of chick erythrocytes with human fibroblasts of patients with Pompe's disease (alpha-glu-deficient) and GM1-gangliosidosis (beta-gal-deficient), respectively. The enzymes appear to be of chick origin and their activities can be detected at first around 4 days after fusion, i.e., at a time when the nucleoli in the erythrocyte nuclei have been reactivated. Maximal activities are reached around 15 days after fusion. No generation of the lysosomal enzyme beta-hexosaminidase is detected in the heterokaryons up to 23 days after fusion of chick erythrocyte with either beta-hexosaminidase A- and B-deficient fibroblasts (Sandhoff's disease) or beta-hexosaminidase A-deficient fibroblasts (Tay-Sachs disease). Similarly no expression of the cytosol enzyme glucose-6-phosphate dehydrogenase (G6PD) is fond up to 30 days after fusion, when chick erythrocytes are fused with fibroblasts from two different G6PD-deficient cell strains (residual activities of 4 and 20% respectively). Indirectly we examined N-acetyl-glucosamine-1-phosphate transferase activity, an enzyme located in the endoplasmic reticulum/Golgi region. This enzyme is needed for the phosphorylation of the lysosomal hydrolases and absence of its activity is the cause of the multiple lysosomal enzyme deficiencies in patients with I-cell disease. The retention of both, chick and human beta-galactosidase in the experiments in which I-cell fibroblasts were fused with chick erythrocytes indicates a reactivation of the gene coding for this phosphorylating enzyme. It also implies that this step in the processing of human lysosomal enzymes is not species-specific.  相似文献   

11.
Cultured skin fibroblasts from patients suffering with infantile generalized N-acetylneuraminic acid (NeuAc) storage disease accumulate free NeuAc in a population of lysosomes less dense than those observed in normal fibroblasts (1.035 vs. greater than 1.07 mean density), as assessed by the distribution of lysosomal enzyme activities and NeuAc on Percoll gradients after subcellular fractionation. In the present study, normal and affected fibroblasts were labeled with [35S]methionine, and cell homogenates or subcellular fractions from Percoll gradients were immunoprecipitated with polyclonal antibodies to lysosomal N-acetyl-beta-hexosaminidase (Hex); immunoprecipitated polypeptides were analyzed by SDS-polyacrylamide gel electrophoresis. The synthesis and initial processing of Hex polypeptides were comparable in normal and affected fibroblasts, but mature polypeptides were quantitatively localized in "buoyant" lysosomes of affected cells, along with Hex activity; moreover, mature alpha-chain of Hex was approximately 2 kDa larger than that observed in normal cells. The molecular weight difference was apparently due to impaired proteolytic processing of alpha-chain in affected fibroblasts, since treatment of immunoprecipitated alpha-chain from normal and affected cells with neuraminidase and endo-beta-N-acetylglucosaminidase H failed to resolve the molecular weight difference. The impaired processing was observed to be persistent (after a chase of up to 200 h), but had no apparent effect on the turnover or activity of Hex in affected fibroblasts. The observed proteolytic processing defect may be primary or secondary in infantile NeuAc storage disease.  相似文献   

12.
We previously reported that I-cell disease lymphoblasts maintainnormal or near-normal intracellular levels of lysosomal enzymes,even though N-acetylglucosamine-1-phosphotransferase activityis severely depressed or absent (Little et al., Biochem. J.,248, 151–159, 1987). The present study, employing subcellularfractionation on colloidal silica gradients, indicates thatboth light and heavy lysosomes isolated from I-cell diseaseand pseudo-Hurler polydystrophy lymphoblasts possess normalspecific activity levels of N-acetyl-ß-D-hexosaminidase,-D-mannosidase and ß-D-glucuronidase. These currentfindings are in contrast to those of cultured fibroblasts fromthe same patients, where decreased intralysosomal enzyme activitiesare found. Column chromatography on Ricinus communis revealedthat N-acetyl-ß-D-hexosaminidase in both heavy andlight I-cell disease lysosomal fractions from lymphoblasts possessesan increased number of accessible galactose residues (30–50%)as compared to the enzyme from the corresponding normal controls.Endo-ß-N-acetylglucos-aminidase H treatment of N-acetyl-ß-D-hexosaminidasefrom the I-cell lysosomal fractions suggests that the majorityof newly synthesized high-mannose-type oligosaccharide chainsare modified to complex-type carbohydrates prior to being transportedto lysosomes. This result from lymphoblasts differs from previousfindings with fibroblasts, where N-acetyl-ß-D-hexosaminidasefrom I-cell disease and pseudo-Hurler polydystrophy lysosomesexhibited properties associated with predominantly high-mannose-typeoligosaccharide chains. The current results imply that differentcell types may modify the carbohydrate side chains of lysosomalenzymes in a differential manner, and that selected cell typesmay also employ mechanisms other than the mannose-6-phosphatepathway for targeting lysosomal enzymes to lysosomes. I-cell disease lymphoblasts lysosomes mannose-6-phosphate oligosaccharide chains pseudo-Hurler polydystrophy  相似文献   

13.
We have examined frozen liver tissue for N-acetylglucosamine-l-phosphotransferase, an enzyme required for the formation of the mannose 6-phosphate recognition marker of lysosomal enzymes. Using [β32P]-UDPGlcNAc and placental β-hexosaminidase B as N-acetylglucosamine l-phosphate donor and acceptor, respectively, we were unable to find activity of the transferase in 100,000 × g membranes prepared from livers of patients with I-cell disease, whereas activity was readily observed in membranes from control livers stored under the same conditions. Yet the activity of several lysosomal enzymes (β-N-acetylglucosaminidase, β-glucuronidase, α-mannosidase and α-L-iduronidase) was comparable in liver tissue of I-cell patients and controls, and only β-galactosidase activity showed a marked reduction. These results suggest that in contrast to cultured skin fibroblasts, liver may be able to introduce into lysosomes acid hydrolases that lack the mannose 6-phosphate recognition marker.  相似文献   

14.
It is shown that infection of chick embryo fibroblasts with agents of paratrachoma and meningopneumonia Halprowiaceae (Chlamydiaceae) causes a sharp decrease of the activities of lysosomal enzymes, e.g. acidic alpha-glucosidase, beta-glucuronidase, beta-galactosidase, alpha-mannosidase, acid phosphatase, etc. The activity of cytosol enzymes (neutral alpha-glucosidase, amylo-1,6-glucosidase) does not change, however. A decrease in the activities of lysosomal enzymes in infected fibroblasts occurs some time later after inoculation and is due to a release of lysosomal enzymes from the fibroblasts into the culture medium, without loss of cell integrity. No changes in the activity of lysosomal enzymes in fibroblasts and culture medium is observed in the case of inoculation of cells with a killed agents, as well as after contact of cells with a suspension of normal chick embryo yolk sacs. The release of lysosomal enzymes from halprowiae-infected chick embryo fibroblasts probably occurs by the exocytosis.  相似文献   

15.
Activator protein (AP), which stimulated fibroblast sphingomyelinase activity, was isolated from the spleen of a patient with Gaucher's disease type I by the combined techniques of heat and alcohol denaturation, DEAE-cellulose column chromatography, gel filtration, preparative polyacrylamide-gel electrophoresis and decyl-agarose chromatography. Urea/sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis showed two bands, one with an Mr of approx. 3,000 and the other with an Mr of 5,000-6,500. Similarly, SDS/polyacrylamide-gel electrophoresis performed in the absence of urea revealed the presence of two components, one of which adsorbed to a concanavalin A (Con A) column. Both components stimulated sphingomyelinase activity. On a non-denaturing polyacrylamide gel containing Triton X-100, four major components, two of which bound to Con A, were detected with the dye Stains-All. Cross-reacting material (CRM) to polyclonal Gaucher spleen AP antibodies was detected in normal fibroblasts and in fibroblasts from patients with sphingomyelinase and beta-glucocerebrosidase deficiency states (Niemann-Pick and Gaucher's diseases respectively). CRM in normal fibroblasts adsorbed to Con A columns and had the same mobility on SDS/polyacrylamide-gel electrophoresis as Con A-adsorbing Gaucher spleen AP. Normal AP was not observed in mucolipidosis type II (I-cell disease) fibroblasts; instead, extracts from these cells revealed the presence of two closely migrating bands with higher Mr values than normal fibroblast CRM. Furthermore, extracts of media from I-cell fibroblast cultures, but not from control or Gaucher fibroblast cultures, contained AP activity towards sphingomyelinase and beta-glucocerebrosidase. Fibroblasts from a patient with mucolipidosis type III (pseudo-Hurler polydystrophy) showed an intermediate pattern consisting of normal as well as the higher-Mr CRM. Our data provide evidence for the existence of AP in cultured skin fibroblasts and suggest that these proteins may be targetted to the lysosome by post-translational modification in a similar manner to that reported for lysosomal enzymes.  相似文献   

16.
Lysosomal enzymes were detected in a highly purified preparation of frog erythrocytes. Pretreatment of intact erythrocytes with lysosomotropic drugs reduced the number of soluble β-receptors in isoproterenol-treated cells, whereas the level of membrane-bound receptors in these cells was unaffected. Subcellular fractionation by Percoll gradient centrifugation revealed that one species of lysosomes (density: 1.15 g/ml), contained a fraction of membrane-bound β-adrenergic receptors. This fraction of membrane-bound receptors was markedly increased when desensitized cells were pretreated with chloroquine. Thus the internalized receptors appear to be delivered to lysosomes and released from the endocytic vesicles by the lysosomal enzymes.  相似文献   

17.
Polyclonal antibodies to the mannose 6-phosphate specific receptor from human liver inhibited the endocytosis of lysosomal enzymes in fibroblasts by greater than 95% and enhanced 3-20-fold the secretion of precursors of lysosomal enzymes in these cells. Exposing fibroblasts for 4 h to antibody resulted in loss of greater than 90% of the membrane-bound receptors. If fibroblasts were treated with the antibody in the presence of CBZ-Phe-Ala-CHN2, an inhibitor of lysosomal cysteine proteinases, the receptor and smaller degradation products are recovered in dense lysosomes. In treated cells 18-58% of total receptor-related polypeptides were recovered in dense lysosomes. In control cells less than 4% of the receptor was found in the lysosomal fraction. We conclude from these results that normally the receptor is spared from lysosomal degradation. When tagged with antibody, however, the receptor is transported into lysosomes and degraded. The loss of intracellular receptors involved in segregation of newly synthesized lysosomal enzymes indicates an exchange between the former and the plasma membrane-bound receptors.  相似文献   

18.
B lymphocytes from patients with I-cell disease (ICD) maintain normal cellular levels of lysosomal enzymes despite a deficiency of the enzyme UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1- phosphotransferase. We find that an ICD B lymphoblastoid cell line targets about 45% of the lysosomal protease cathepsin D to dense lysosomes. This targeting occurs in the absence of detectable mannose 6- phosphate residues on the cathepsin D and is not observed in ICD fibroblasts. The secretory protein pepsinogen, which is closely related to cathepsin D in both amino acid sequence and three-dimensional structure, is mostly excluded from dense lysosomes, indicating that the lymphoblast targeting pathway is specific. Carbohydrate residues are not required for lysosomal targeting, since a non-glycosylated mutant cathepsin D is sorted with comparable efficiency to the wild type protein. Analysis of a number of cathepsin D/pepsinogen chimeric proteins indicates that an extensive polypeptide determinant in the cathepsin D carboxyl lobe can confer efficient lysosomal sorting when introduced into the pepsinogen sequence. This determinant overlaps but is not identical to the recognition marker for phosphotransferase. These results indicate that a specific protein recognition event underlies Man-6-P-independent lysosomal sorting in ICD lymphoblasts.  相似文献   

19.
In the human adenocarcinoma cell line Caco-2 a substantial amount of a precursor form of the lysosomal enzyme alpha-glucosidase is not segregated into lysosomes, but instead secreted from the apical membrane. In this study we addressed the question whether this process is mediated by mannose 6-phosphate receptors. The subcellular distribution of the cation-independent mannose 6-phosphate receptor was studied by means of electron microscopic immunocytochemistry. The bulk of label was found in the perinuclear region in electron-lucent and dense vesicles, some of the latter bearing a coat. Receptor-containing dense vesicles were also found throughout the cytoplasm. In the apical part of the cells, label for the receptor was present over the surrounding membrane and the interior vesicles of multivesicular bodies, but not over lysosomes. Label on the plasma membrane was mainly restricted to the apical domain. In contrast to alpha-glucosidase, the secreted forms of the lysosomal enzymes cathepsin D, beta-hexosaminidase and beta-glucuronidase are mainly found in the basolateral medium. Enzyme activity measurements and immunoprecipitation of metabolically labeled cells showed that incubation with NH4Cl leads to an enhanced secretion of these enzymes into the basolateral medium, but has no effect on the basolateral secretion of alpha-glucosidase. In addition, NH4Cl caused a minor decrease in the secretion of these enzymes from the apical side and had little or no effect on the secretion of alpha-glucosidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adsorptive pinocytosis of acid hydrolases by fibroblasts depends on phosphomannosyl recognition markers on the enzymes and high-affinity pinocytosis receptors on the cell surface. In this study, beta- glucuronidase binding to the cell surface of attached fibroblasts was found to be saturable and inhibitable by mannose-6-phosphate (Man-6-P). Dissociation of cell-bound beta-glucuronidase occurred very slowly at neutral pH, but was greatly accelerated by lowering the pH below 6.0, or by exposure to Man-6-P. Comparison of the maximal cell surface binding and the observed rate of enzyme pinocytosis suggests that the pinocytosis receptors are replaced or reused about every 5 min. Enzyme pinocytosis was not affected by inhibition of new protein synthesis for several hours, suggesting a large pool of internal receptors and/or reuse of internalized receptors. Chloroquine treatment of normal human fibroblasts had three effects: (a) greatly enhanced secretion of newly synthesized acid hydrolases bearing the recognition marker for uptake, (b) depletion of enzyme-binding sites from the cell surface, and (c) inhibition of pinocytosis of exogenous enzyme. Only the third effect was seen in I-cell disease fibroblasts, which were also less sensitive than control cells to this effect. These observations are consistent with a model for transport of acid hydrolases that proposes that delivery of newly synthesized acid hydrolases to lysosomes requires the phosphomannosyl recognition marker on the enzymes, and intracellular receptors that segregate receptor-bound enzymes into vesicles for transport to lysosomes. This model explains how chloroquine, which raises intralysosomal pH, can disrupt both the intracellular pathway for newly synthesized acid hydrolases, and the one for uptake of exogenous enzyme by cell surface pinocytosis receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号