首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious haematopoietic necrosis virus (IHNV) is detrimental to the farming of rainbow trout (Oncorhynchus mykiss) and other salmonids in the Northern hemisphere. The major histocompatibility complex (MHC) plays a key role in immune response in invertebrates, as evidenced by the close correlation of MHC polymorphisms with disease resistance/susceptibility. To analyse the correlation between rainbow trout resistance and susceptibility to IHNV and genetic variation in exon 2 of MHC class Ia gene, UBA, we employed two approaches, namely, polymerase chain reaction-single strand conformation polymorphism analysis and cloning/sequencing. From 102 resistant and 82 susceptible individuals, a total of 12 alleles in UBA exon 2 (GenBank: JX136662–JX136673) were identified, including 11 novel alleles. The maximum number of these alleles in a single individual was four, suggesting that UBA exon 2 most likely resides on at least two loci in the genome. Most of the variations in UBA exon 2 were located in the peptide-binding region and were determined to have been subject to positive selection during evolution. Correlation analysis revealed that Onmy-UBA*0111 and Onmy-UBA*0107 are highly associated with IHNV susceptibility (P = 0.001), whereas Onmy-UBA*0101, Onmy-UBA*0102, and Onmy-UBA*0103 are highly related to IHNV resistance (P = 0.000). In addition, the three resistant alleles were predominant in the IHNV disease-resistant population; thus, these molecular markers can be used for anti-IHNV breeding of rainbow trout.  相似文献   

2.
3.
4.
Infectious hematopoietic necrosis is a serious viral disease of salmonids, including rainbow trout Oncorhynchus mykiss, and causes tremendous economic losses to the rainbow trout farming industry. Major histocompatibility complex (MHC) genes are crucial elements of adaptive immunity in vertebrate organisms and have been linked with the resistance to numerous pathogenic diseases. In this study, polymerase chain reaction‐single strand conformation polymorphism (PCR‐SSCP) followed by cloning and sequencing were used to examine polymorphisms in the DAA genes (specifically DAA exon 2 of MHC class IIα) of rainbow trout and investigate their association with the infectious hematopoietic necrosis virus (IHNV) resistance in rainbow trout. Seventeen alleles were resolved, including 13 novel alleles. Individuals possessed between two and five alleles, indicating that the genome harbours at least three closely‐related DAA exon 2 loci. The ratio of non‐synonymous to synonymous nucleotide substitutions suggested that DAA exon 2 is under positive selection. A greater variability of amino acids and non‐synonymous nucleotide substitution rate was evident in the peptide‐binding region (PBR) than in the non‐PBR (27.75%). Importantly, the analyses revealed that certain MHC class IIα alleles appear to confer resistance to IHNV in rainbow trout, while others confer susceptibility. The most common alleles in the resistant populations of rainbow trout, Onmy‐DAA*1301 and Onmy‐DAA*0304, confer resistance to IHNV and were not present in the susceptible population. Hence, these alleles may be ideal molecular markers that can assist the breeding of IHNV resistance in rainbow trout.  相似文献   

5.
In the present study, clonal rainbow trout (Oncorhynchus mykiss) embryos and larvae were assayed for the expression of key molecules involved in specific cell-mediated cytotoxicity using an anti-MHC class I monoclonal Ab and by RT-PCR using specific primers derived from classical MHC class I (class Ia), TCR and CD8. Whereas RT-PCR revealed that MHC class Ia and CD8 were expressed from at least 1 week after fertilisation (p.f.) on, TCR expression was detectable from 2 weeks p.f. Immunohistochemistry indicated an early and distinct expression of MHC class I protein in the thymus. Positive lymphoid, epithelial and endothelial cells were found in the pronephros, in the spleen and in the inner and outer epithelia at later stages. Whereas in older rainbow trout the intestine is counted among the organs of the highest class I expression, during ontogeny it was the last site (39 days after hatching) where such expression was detectable. Knowledge on the appearance of the assayed key molecules during fish development is relevant for the pathogenesis of infections as well as for early vaccine delivery. Besides such information regarding the development of the adaptive immune system, immunohistochemistry revealed that in early larvae MHC class I was expressed in neurons whereas in older rainbow trout this was not observed.  相似文献   

6.
The major histocompatibility complex (MHC) is well-studied in mammals. Much research has addressed the genomic organisation of MHC genes and it is well established that human MHC class I genes are located on chromosome 6. However, information on the organisation of the MHC complex in rainbow trout is only beginning to become available. In the present study it was determined that rainbow trout MHC class I sequences are located on chromosome 18. This is the first reported use of fluorescence in situ hybridisation (FISH) to identify the chromosomal location of genes involved in the immune system of fish.  相似文献   

7.
We report the identification of a single major chromosomal region controlling natural killer (NK) cell-like activity in rainbow trout (Oncorhynchus mykiss). A genetic map based on 484 AFLP and 39 microsatellite genotypes from 106 doubled haploid fish was constructed. These fish were produced by androgenesis from a hybrid of two clonal lines divergent in NK-like activity. NK-like activities for 75 of the doubled haploids were quantified by an in vitro chromium release assay utilizing 51Cr-labeled YAC-1 target cells. Composite interval mapping revealed a single major quantitative trait locus (QTL) associated with NK-like activity in this rainbow trout model. Genetic mapping revealed this QTL to also be unlinked to: fragmented MHC class I and MHC class II regions, the leukocyte receptor cluster, the natural killer cell enhancement factor (NKEF) gene, the RAG-1 gene, and two QTL associated with resistance to infectious pancreatic necrosis virus in rainbow trout. Collectively, these results extend the utility of rainbow trout as an immunological model and are consistent with the idea that a single chromosomal region homologous to the natural killer cell complex (NKC) located on syntenic portions of mouse chromosome (Chr) 6, human Chr 12, and rat Chr 4 may exist in a lower vertebrate model.  相似文献   

8.
REM2 is a member of the REM, RAD, and GEM/KIR (RGK) subfamily of RAS superfamily proteins and plays an important role in brain development and function. In this study, two Rem2 isoforms were isolated from the rainbow trout (Oncorhynchus mykiss). The two genes, designated O. mykiss rem2a and rem2b, both encode 304 amino acid proteins with 61% and 62% identities to zebrafish (Danio rerio) Rem2, respectively, and each with 43% identity to mammalian (human) REM2. To our knowledge, this is the first incidence of Rem2 isoforms in a species that are the result of gene duplication. Both isoforms possessed similar tissue expression profiles with the highest levels in the brain. The rem2a gene has significantly higher expression levels than rem2b in all tissues assayed except the brain and head kidney. In the central nervous system, both isoforms showed similar expression levels with the highest levels occurring in the olfactory bulb, cerebrum, and midbrain, though rem2a expression is significantly higher in the spinal cord. Based on known functional roles of Rem2 in synapse development and stem cell proliferation, the characterization of Rem2 in rainbow trout could shed light on its role in adult vertebrate neurogenesis and brain regeneration.  相似文献   

9.

Background

Rainbow trout have an XX/XY genetic mechanism of sex determination where males are the heterogametic sex. The homology of the sex-determining gene (SDG) in medaka to Dmrt1 suggested that SDGs evolve from downstream genes by gene duplication. Orthologous sequences of the major genes of the mammalian sex determination pathway have been reported in the rainbow trout but the map position for the majority of these genes has not been assigned.

Results

Five loci of four candidate genes (Amh, Dax1, Dmrt1 and Sox6) were tested for linkage to the Y chromosome of rainbow trout. We exclude the role of all these loci as candidates for the primary SDG in this species. Sox6i and Sox6ii, duplicated copies of Sox6, mapped to homeologous linkage groups 10 and 18 respectively. Genotyping fishes of the OSU × Arlee mapping family for Sox6i and Sox6ii alleles indicated that Sox6i locus might be deleted in the Arlee lineage.

Conclusion

Additional candidate genes should be tested for their linkage to the Y chromosome. Mapping data of duplicated Sox6 loci supports previously suggested homeology between linkage groups 10 and 18. Enrichment of the rainbow trout genomic map with known gene markers allows map comparisons with other salmonids. Mapping of candidate sex-determining loci is important for analyses of potential autosomal modifiers of sex-determination in rainbow trout.  相似文献   

10.
Many viruses induce a strong T cell response that contributes to the elimination of infected cells presenting viral peptides by MHC molecules. The structure and expression of genes encoding molecules homologous to mammalian alphabeta TCRs have been recently characterized in rainbow trout and in several teleost species, but the alphabeta T cell response against pathogens has not been directly demonstrated. To study the modifications of the T cell repertoire during an acute viral infection in rainbow trout, we adapted the immunoscope methodology, which consists of spectratyping the complementarity-determining region 3 length of the TCRbeta chain. We showed that the naive T cell repertoire is polyclonal and highly diverse in the naive rainbow trout. Using viral hemorrhagic septicemia virus (VHSV), which provokes an acute infection in rainbow trout, we identified skewed complementarity-determining region 3 size profiles for several VbetaJbeta combinations, corresponding to T cell clonal expansions during primary and secondary response to VHSV. Both public and private T cell expansions were shown by immunoscope analysis of spleen cells from several infected individuals of a rainbow trout clone sharing the same genetic background. The public response to VHSV consisted of expansion of Vbeta4Jbeta1 T cell, which appeared early during the primary response and was strongly boosted during the secondary response.  相似文献   

11.
Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2Kb gene are highly susceptible to persisting Theiler''s virus infection within the CNS and subsequent demyelination, mice expressing the Db transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of Kb but encoding the peptide binding domain of Db, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric Kbα1α2Db gene (low) and Db (high) in the CNS of infected mice mirror expression levels of their endogenous H-2q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.  相似文献   

12.
One of the most unexpected discoveries in MHC genetics came from studies dealing with the teleost MHC. Initially discovered in zebrafish, the MHC class I and II regions of all bony fish are not linked. Previous segregation analysis in trout suggested that the class I and II regions reside on completely different chromosomes. To learn more about MHC genomics in trout, we have isolated BAC clones harboring class Ia and Ib loci, a single BAC clone containing an MH class II gene ( DAB), as well as BAC clones containing the ABCB2 gene. Upon PCR and sequence confirmation, BAC clones were labeled and used as probes for in situ hybridization on rainbow trout metaphase chromosomes for determination of the physical locations of the trout MH regions. Finally, SNPs, RFLPs, and microsatellites found within the BAC clones allowed for these regions to be assigned to specific linkage groups on the OSU x Hotcreek (HC) and OSU x Arlee (ARL) genetic linkage maps. Our data demonstrate that the trout MH regions are located on at least four different chromosomes and the corresponding linkage groups, while also providing direct evidence for the partial duplication of the MH class I region in trout.  相似文献   

13.
14.
Considerable evidence suggests that one genome duplication event preceded the divergence of teleost fishes and a second genome duplication event occurred before the radiation of teleosts of the family Salmonidae. Two Sox9 genes have been isolated from a number of teleosts and are called Sox9a and Sox9b. Two Sox9 gene copies have also been isolated from rainbow trout, a salmonid fish and are called Sox9 and Sox9α2. Previous evaluations of the evolutionary history of rainbow trout Sox9 gene copies using phylogenetic reconstructions of their coding regions indicated that they both belong to the Sox9b clade. In this study, we determine the true evolutionary history of Sox9 gene copies in rainbow trout. We show that the locus referred to as Sox9 in rainbow trout is itself duplicated. Mapping of the duplicated Sox9 gene copies indicates that they are co-orthologs of Sox9b while mapping of Sox9α2 indicates that it is an ortholog of Sox9a. This relationship is supported by phylogenetic reconstruction of Sox9 gene copies in teleosts using their 3′ untranslated regions. The conflicting phylogenetic topology of Sox9 genes in rainbow trout indicates the occurrence of gene conversion events between Sox9 and Sox9α2 which is supported by a number of recombination analyses.  相似文献   

15.
Induction of innate immune pathways is critical for early anti-microbial defense but there is limited understanding of how teleosts recognize microbial molecules and activate these pathways. In mammals, Toll-like receptors (TLR) 1 and 2 form a heterodimer involved in recognizing peptidoglycans and lipoproteins of microbial origin. Herein, we identify and describe the rainbow trout (Oncorhynchus mykiss) TLR1 gene ortholog and its mRNA expression. Two TLR1 loci were identified from a rainbow trout bacterial artificial chromosome (BAC) library using DNA sequencing and genetic linkage analyses. Full length cDNA clone and direct sequencing of four BACs revealed an intact omTLR1 open reading frame (ORF) located on chromosome 14 and a second locus on chromosome 25 that contains a TLR1 pseudogene. The duplicated trout loci exhibit conserved synteny with other fish genomes that extends beyond the TLR1 gene sequences. The omTLR1 gene includes a single large coding exon similar to all other described TLR1 genes, but unlike other teleosts it also has a 5′ UTR exon and intron preceding the large coding exon. The omTLR1 ORF is predicted to encode an 808 amino-acid protein with 69% similarity to the Fugu TLR1 and a conserved pattern of predicted leucine-rich repeats (LRR). Phylogenetic analysis grouped omTLR1 with other fish TLR1 genes on a separate branch from the avian TLR1 and mammalian TLR1, 6 and 10. omTLR1 expression levels in rainbow trout anterior kidney leukocytes were not affected by the human TLR2/6 and TLR2/1 agonists diacylated lipoprotein (Pam2CSK4) and triacylated lipoprotein (Pam3CSK4). However, due to the lack of TLR6 and 10 genes in teleost genomes and up-regulation of TLR1 mRNA in response to LPS and bacterial infection in other fish species we hypothesize an important role for omTLR1 in anti-microbial immunity. Therefore, the identification of a TLR2 ortholog in rainbow trout and the development of assays to measure ligand binding and downstream signaling are critical for future elucidation of omTLR1 functions.  相似文献   

16.
17.
18.
19.
Iturra P  Lam N  de la Fuente M  Vergara N  Medrano JF 《Genetica》2001,111(1-3):125-131
With the aim of characterizing the sex chromosomes of rainbow trout (Oncorhynchus mykiss) and to identify the sex chromosomes of coho salmon (O. kisutch), we used molecular markers OmyP9, 5S rDNA, and a growth hormone gene fragment (GH2), as FISH probes. Metaphase chromosomes were obtained from lymphocyte cultures from farm specimens of rainbow trout and coho salmon. Rainbow trout sex marker OmyP9 hybridizes on the sex chromosomes of rainbow trout, while in coho salmon, fluorescent signals were localized in the medial region of the long arm of one subtelocentric chromosome pair. This hybridization pattern together with the hybridization of a GH2 intron probe on a chromosome pair having the same morphology, suggests that a subtelocentric pair could be the sex chromosomes in this species. We confirm that in rainbow trout, one of the two loci for 5S rDNA genes is on the X chromosome. In males of this species that lack a heteromorphic sex pair (XX males), the 5S rDNA probe hybridized to both subtelocentrics This finding is discussed in relation to the hypothesis of intraspecific polymorphism of sex chromosomes in rainbow trout.  相似文献   

20.
In the enclosed fresh-water environmsnt of Hanningfield Reservoir, Essex, England, Anisakis sp. larvae (parasites of marine fish) were found in 55 per cent of 40 brown trout and in 26·2 per cent of 61 rainbow trout. Experimental infection by intubating larvae into the stomach was more successful in brown trout (50·6 per cent recovery rate) than in rainbow trout (27 per cent recovery rate). Some larvae reached the body-cavity as early as 2 h after infection. They penetrated the region between the oesophagus and intestine immediately posterior to the caecal openings. Fewer larvae successfully penetrated the gut wall of brown trout within 24 h at 8°C than at 15 ± 1°C. It appears that the reservoir trout acquired Anisakis by being fed as juveniles on untreated marine fish offal containing live larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号