首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The total seed lipids of four flax (Linum usitatissimum) genotypes, differing markedly in their acyl composition, were extracted and fractionated using column, preparative, and thin-layer chromatography. In the total lipid extract of seeds, the lower linolenate content of the cultivar Glenelg (39.1% compared to that of cv. Croxton (50.5%) was associated with a higher oleate content. Further reductions in linolenate content in the induced mutants of cv. Glenelg, M1722 (17.2%) and "Zero" (1.9%) were accompanied by equivalent increases in linoleate but only minor increases in oleate. Similar changes were observed in the major triacylglycerol fraction of the simple lipids (fatty acid esters of glycerol and sterols), but there was considerable heterogeneity for acyl composition in the minor simple lipid components, including both diacylglycerols and sterol esters, and the complex lipids (glycolipids and phospholipids). The induced mutations substantially reduced linolenate content of all lipid fractions but in no case was it eliminated. Maturation of "Zero" seed at 15/10 degrees C (compared to 24/19 degrees C) increased linoleate and decreased stearate and oleate contents in all lipid fractions. In contrast to seed lipids, the acyl composition of the leaf lipids of the mutant genotypes was the same as those of their parent.  相似文献   

2.
Properties of cholesteryl esters in pure and mixed monolayers   总被引:1,自引:0,他引:1  
The surface properties of cholesteryl palmitate, stearate, linoleate, linolenate, arachidonate, and acetate were investigated. Long-chain esters were not surface-active and force-area (pi-A) isotherms were not obtained. Unsaturated cholesteryl esters were oxidized at the air-water interface and these oxidized lipids gave expanded pi-A isotherms. Cholesteryl acetate had an equilibrium spreading pressure of 14.0 dynes/cm and formed a stable monolayer indistinguishable from cholesterol below that surface pressure. Cholesteryl linoleate formed mixed monolayers with surface-active lipids, and the amount of cholesteryl linoleate in the monolayer depended both on its solubility in the other lipid and on the surface pressure. Even at moderate surface pressures cholesteryl linoleate was extruded from the monolayer into a bulk phase. Cholesteryl acetate exhibited the well-known condensing effect of cholesterol in mixed monolayers with egg lecithin.  相似文献   

3.
We have studied the influence of experimental hypothyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty acid composition. Hypothyroid rats demonstrated an 80% decrease in delta 9 (stearate) desaturation and a 43% decrease in delta 6 (linoleate) desaturation. Liver microsomal fatty acid composition was altered in the hypothyroid animals with a significantly decreased proportion of arachidonate and increased proportions of linoleate, eicosa-8,11,14-trienoate, eicosapentaenoate and docosahexaenoate. The bulk of these changes occurred in both of the two major phospholipid components, phosphatidylcholine and phosphatidylethanolamine. All of the changes were corrected by treatment of the hypothyroid rat with 25 micrograms of tri-iodothyronine/100 g body wt. twice daily. The diminished delta 9 desaturation did not lead to any changes in fatty acid composition. The increased linoleate and decreased arachidonate levels may be due to the diminished delta 6 desaturase activity, the rate-controlling step in the conversion of linoleate into arachidonate. The increases in the proportions of the other polyunsaturated fatty acid components cannot be explained by changes in the synthesis of unsaturated fatty acids, but are probably due to diminished utilization of these fatty acids.  相似文献   

4.
Incorporation of exogenous [14C] arachidonate by human skin fibroblasts was found to be significantly greater than that of either [14C]linoleate or alpha-[14C] linolenate. Arachidonate was preferentially esterified in the PI + PS and PE classes of phospholipids. Over 40% of the incorporated [14C] arachidonate was chain elongated in 24 hours. Cells were also grown in lipid-free medium to enhance PUFA desaturation and elongation and the utilization of various omega 6 and omega 3 metabolites examined. Whereas [14C] linoleate partitioned approximately 50:50 between PL and TAG, eicosatrienoate (20:3 omega 6) was selectively sequestered in TAG. Arachidonate and docosatetraenoate (22:4 omega 6) were preferentially incorporated into phospholipids; the PI + PS fraction was most highly enriched with arachidonate. Modification of alpha-[14C] linolenate was more extensive than that of [14C] linoleate. Docosapentaenoate (22:5 omega 3) was the major omega 3 [14C] PUFA of PI + PS and PE. Eicosapentaeonate was not selectively incorporated into phospholipids; within phospholipids the 20:5 omega 3 was primarily in PC. These results indicate that human skin fibroblasts exhibit acyl specificity in the esterification of polyunsaturated fatty acids, including preferential utilization of arachidonate rather than other prostaglandin precursors in the PI + PS fraction.  相似文献   

5.
The effects of hyperthyroidism on the metabolism and distribution of polyunsaturated fatty acids in rats were investigated. The animals were fed diets containing an equal amount (1% each) of linoleate and linolenate. Although the hepatic and plasma levels of the linolenate family of acids were not greatly affected by the hyperthyroidism, the heart of the hyperthyroid rat contained 425% more docosahexaenoate than did that of its euthyroid control. The hyperthyroidism was accompanied by accumulations of 85, 105, and 114% more arachidonic acid in the heart, plasma, and liver, respectively. Nevertheless, most of the total increases in plasma and liver fatty acids were due to the greater accumulations of palmitic, stearic, and oleic acids; the hepatic level of oleate was elevated by 204%. Hyperthyroid rats had 106% more total fatty acids in their hearts, this increase being due largely to the greater accumulation of polyunsaturated acids. The thyroid hormone appears to accelerate the biosynthesis of both arachidonate and docosahexaenoate, and these endogenous polyunsaturated acids are then selectively incorporated into the cardiovascular tissues. Other possible relationships between thyroid action and tissue polyenoic acids in "cold-stressed" animals are discussed.  相似文献   

6.
This paper reports the development and validation of an improved assay for quantitation of fatty acid ethyl esters (FAEEs) in human meconium using liquid chromatography/tandem mass spectrometry (LC–MS/MS). FAAEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate, ethyl linolenate, and ethyl arachidonate) and the internal standard (I.S.), ethyl heptadecanoate, were separated by reverse phase HPLC and quantified by MS/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM) in the positive ionization mode. The absolute recovery of FAEEs varied from 55 ± 10% for 0.33 nmol/g (100 ng/g) of ethyl linoleate up to 86 ± 8% for 1.55 nmol/g (500 ng/g) of ethyl miristate. The LODs and LOQs varied from 0.01 to 0.08 nmol/g and from 0.02 to 0.27 nmol/g, respectively. The assay has been successfully applied to examine the FAEE levels in 81 meconium samples from babies born to mothers reporting alcohol consumption, to varying degrees, during pregnancy.  相似文献   

7.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

8.
An endogenous inhibitor of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was isolated from the 105,000 X g supernatant fraction of lungs of pregnant rabbits following DEAE chromatography. The material was heat stable and was resistant to pronase treatment. The inhibitor contained a mixture of saturated and mono-unsaturated fatty acids and cholesterol with palmitate and oleate representing the major fatty acids in the inhibitory factor. The factor inhibited prostaglandin dehydrogenase activity but had only minor effects on the activity of NAD+-dependent alcohol and lactate dehydrogenases or the NADP+-dependent isocitrate dehydrogenase. In an attempt to develop a greater understanding of the inhibitory action of fatty acids on prostaglandin dehydrogenase activity, a variety of standard fatty acids were examined for their ability to decrease enzymic activity. Oleate and palmitate inhibited enzymic activity by 70% at 10 microM, whereas arachidonate and myristate were only 30% inhibitory at this concentration. A comparison among the 18-carbon-containing fatty acids demonstrated that oleate was more potent than linoleate and linolenate in inhibiting prostaglandin dehydrogenase activity. The coenzyme A derivatives of oleate, linoleate and linolenate were less inhibitory than the free fatty acids.  相似文献   

9.
Triacylglycerol, which was one of the minor lipid components in immature seeds of tobacco, accumulated dramatically between 7 and 27 days after flowering and, in mature seeds at 37 days, the fatty acid methyl esters of the triacylglycerols comprised 96.3% of those of the total lipids. Diacylglycerols and sterol ester also increased significantly during seed development. Phosphatidylcholine and phosphatidylethanolamine, which were major components in immature seeds, decreased constantly with increasing maturation as well as the quantities of phosphatidylinositol and phosphatidylglycerol. Monogalactosyldiacylglycerols, digalactosyldiacylglycerols and sulfoquinovosyldiacylglycerols also decreased and disappeared in mature seeds. In the triacylglycerols the percentages of palmitate, stearate and linolenate fell with increasing seed age, while that of linoleate increased up to 75.3% in mature seeds. A similar trend was observed in the fatty acid composition in the diacylglycerols and sterol ester. Generally, in the phospholipids the proportions of linoleate and linolenate decreased with concomitant increases of stearate and oleate.  相似文献   

10.
1. Surgically prepared lactating goats were used to obtain quantitative information on the biohydrogenation and absorption of dietary fat, and on the mammary uptake and transfer into milk fat of the complex mixture of cis- and trans-isomers of octadecenoate that arise during ruminal biohydrogenation. 2. About 90% of dietary linolenate, linoleate and oleate was hydrogenated in the rumen, and the availability to the animals of the essential fatty acid, linoleate, represented only 0.5-1.5% of the total dietary energy. 3. The intra-ruminal administration of (14)C-labelled linolenate and linoleate showed that these acids were not absorbed from the rumen, in agreement with previous work. 4. No selectivity was observed in the metabolism of the geometrical and positional isomers of octadecenoate: their rates of absorption from the small intestine, transfer into lymph, uptake by the mammary gland and appearance in milk fat were similar. 5. The desaturase activity of intestinal epithelium was demonstrated by the appearance in lymph of [1-(14)C]oleate after the addition of [1-(14)C]stearate to the small intestine.  相似文献   

11.
Brain lipid metabolism in the cPLA2 knockout mouse   总被引:3,自引:0,他引:3  
We examined brain phospholipid metabolism in mice in which the cytosolic phospholipase A(2) (cPLA(2,) Type IV, 85 kDa) was knocked out (cPLA(2)(-/-) mice). Compared with controls, these mice demonstrated altered brain concentrations of several phospholipids, reduced esterified linoleate, arachidonate, and docosahexaenoate in choline glycerophospholipid, and reduced esterified arachidonate in phosphatidylinositol. Unanesthetized cPLA(2)(-/-) mice had reduced rates of incorporation of unlabeled arachidonate from plasma and from the brain arachidonoyl-CoA pool into ethanolamine glycerophospholipid and choline glycerophospholipid, but elevated rates into phosphatidylinositol. These differences corresponded to altered turnover and metabolic loss of esterified brain arachidonate. These results suggests that cPLA(2) is necessary to maintain normal brain concentrations of phospholipids and of their esterified polyunsaturated fatty acids. Reduced esterified arachidonate and docosahexaenoate may account for the resistance of the cPLA(2)(-/-) mouse to middle cerebral artery occlusion, and should influence membrane fluidity, neuroinflammation, signal transduction, and other brain processes.  相似文献   

12.
We have studied the influence of experimental hyperthyroidism in the rat on the synthesis of unsaturated fatty acids and on liver microsomal lipid fatty-acid composition. Tri-iodothyronine treatment (25 micrograms/100 g body weight) daily for 3 weeks caused no significant changes in delta 9 (stearate) desaturation but a 24% decrease in delta 6 (linoleate) desaturation. Much larger doses of tri-iodothyronine increased delta 9 desaturation. Liver microsomal fatty-acid composition in hyperthyroidism is altered with significantly increased proportions of stearate and arachidonate and decreased proportions of palmitate, palmitoleate, linoleate (C18:2) and eicosa-8,11,14-trienoate (C20:3). These changes, other than the decreases proportion of C20:3 fatty acid, which may be due to the diminished delta 6 desaturase activity, cannot be attributed to changes in fatty-acid desaturation. Most of these changes were also found to be due not simply to the decreased weight gain or the increased food intake of the hyperthyroid animals. Only the decreased C18:2 fatty-acid proportions could be mimicked by restricting food intake of control animals and none of the changes were prevented by restricting food intake of hyperthyroid animals. Thus most of the changes in microsomal lipid fatty-acid composition are likely to be due to a thyroid hormone effect on peripheral lipid mobilization or lipid degradation.  相似文献   

13.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

14.
The mechanism involved in the enzymic acylation of 1-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) in brain microsomes was investigated in comparison with the acylation of 1-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC). Both the alkyllsophospholipids were acylated without exogenously added cofactors to similar extents. The [14C]arachidonoyl moiety of exogenously added 1-stearoyl-2-[14C]arachidonoyl-GPC was transferred to the alkyllysophospholipids and the transfer was not inhibited by exogenously added free arachidonate. These results indicated that the transferase activity was due to a transacylase that catalyzes the transfer of fatty acids between intact phospholipids. The addition of CoA increased the acylation of 1-[3H]alkyl-GPC two or three times with a high acceptor concentration, and the highest rate of acylation of 1-[3H]alkyl-GPC was observed in the presence of CoA, ATP, and Mg2+. On the other hand, the addition of such cofactors only slightly increased the acylation of 1-[3H]alkyl-GPE. HPLC analysis revealed that docosahexaenoate and arachidonate were transferred to the second position of both [3H]alkyllysophospholipids without cofactors and that other fatty acids were transferred to much lower extents. With the addition of cofactors, the acylation of 1-[3H]alkyl-GPC by both docosahexaenoate and arachidonate increased 1.5-2 times, and high amounts of palmitate, oleate, and linoleate were newly transferred. High amounts of oleate were also transferred to 1-[3H]alkyl-GPE in the presence of cofactors but the acylation by both docosahexaenoate and arachidonate scarcely increased on the addition of these cofactors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.  相似文献   

16.
Cholesterol ester hydrolase activity of pig aorta has been examined under optimum experimental conditions for hydrolysis of different cholesterol esters. The enzyme specific activity values were in the numerical order of substrates hydrolyzed: cholesteryl linoleate larger than or equal to linolenate greater than palmitate larger than or equal to stearate greater than oleate. The results are discussed in relation to the arterial accumulation of cholesterol esters.  相似文献   

17.
Evidence was obtained that Penicillium chrysogenum can produce linolenate by two biosynthetic pathways, i.e., by elongation of a shorter trienoic acid as well as direct desaturation of 18-C acids. In oxygen deficient cultures, exogenous hexadecatrienoate stimulated [1-14C]acetate incorporation into labeled octadecatrienoate and [U-14C]hexadecatrienoate with nonlabeled acetate yielded linolenate that had relatively little label in the 1-C position. With [1-14C]acetate as the only added substrate, oxygen deficiency inhibited incorporation of label into monoenoic and dienoic acids but not into trienoic acids. Incorporation of the [U-14C]linoleate into linolenate also was inhibited.In aerated cultures, 1-14C-label from laurate, palmitate, stearate, oleate, linoleate, and hexadecatrienoate was readily incorporated into linolenate. Decarboxylation and oxidation studies indicated that the longer acids were incorporated largely intact. [U-14C]Linoleate was incorporated into linolenate in which the fraction of label in 1-C was similar to that of the substrate. These data suggest that this mold has broader synthetic capabilities than do some chloroplast systems for the biosynthesis of linolenate.  相似文献   

18.
1. The synthesis and secretion of glycerolipids by monolayer cultures of rat hepatocytes was measured by using radioactive choline, glycerol and fatty acids and by measuring the concentration of triacylglycerols in the cells. 2. The incorporation of glycerol into triacylglycerol and the accumulation of this lipid in hepatocytes showed little specificity for fatty acids, except for eicosapentaenoate, which stimulated least. Oleate was more effective at stimulating triacylglycerol secretion than were palmitate, stearate, arachidonate and eicosapentaenoate. 3. Linoleate, linolenate, arachidonate and eicosapentaenoate stimulated the incorporation of glycerol and choline into phosphatidylcholine that was secreted into the medium. By contrast, palmitate and stearate produced relatively high incorporations into the phosphatidylcholine that remained in the cells. 4. The incorporation of glycerol and choline into lysophosphatidylcholine in the medium was stimulated 2-3-fold by all of the unsaturated fatty acids tested, whereas palmitate and stearate failed to stimulate if the acids were added separately. When 1 mM-stearate was added with 1 mM-linoleate, the incorporation of linoleate into lysophosphatidylcholine was about 4 times higher than that of stearate. 5. It is proposed that the secretion of lysophosphatidylcholine by the liver could provide a transport system for choline and essential unsaturated fatty acids to other organs.  相似文献   

19.
Adrenocortical cells were prepared from rats maintained on essential fatty acid-deficient diets and control litter mates. Cells from control rats had high concentrations of essential fatty acids in the cholesteryl ester fraction of which approximately 22% was arachidonate. In contrast, cells from EFA-deficient rats had only 2.5% arachidonate in the cholesteryl esters, even though the total esterified cholesterol level was comparable to that of controls. In place of the essential fatty acids, the cholesteryl esters of these cells were rich in 20:3(n--9) and 22:3(n--9). When cells from EFA-deficient rats were incubated with ACTH or dibutyryl cyclic AMP, the output of corticosterone was the same as in controls. Also sterol esters were hydrolyzed to the same extent as in controls despite the unusual composition of the fatty acid esters. The phospholipids in both control and EFA-deficient cells contained high levels of arachidonate but were not hydrolyzed in either type of cell during incubation with ACTH or dibutyryl cyclic AMP. The results indicate that high levels of the prostaglandin precursors, namely linoleate and arachidonate, are not a sine qua non for the steroidogenic action of ACTH or cyclic AMP.  相似文献   

20.
Eight ecdysone 22-long-chain fatty-acyl esters (laurate, myristate, palmitate, stearate, oleate, linoleate, linolenate and arachidate) have been chemically synthesised in high yield. Ecdysone was first converted to the 2,3-acetonide derivative and then acylated selectively at C-22 with the appropriate acyl anhydride. The protecting acetonide group is then removed by mild acid treatment to yield the ecdysone 22-acyl ester. Reaction conditions have been optimised to maximise the overall yield (ca. 70%). The ecdysone acyl esters and their 2,3-acetonide derivatives have been characterised by 1H- and 13C-NMR and high-resolution FAB-mass-spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号